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On the existence of a solution of a system z=j(1, x)
which remains in a given set

by S. P. HasTINGS (Cleveland, Ohio)

Let a(t, x, y) be continuous for all (¢, z, y) and consider the equation
(1) B=a(t,z, ).

In [6] Z. Opial considered the existence of a solution z(-) of (1) which
is bounded on (— oo, oo). Other authors (see for example [1], [2]) also.
discussed bounded solutions of (1), but the strongest results on existence
seem to be those of Opial.

In this note we shall discuss the existence of at least one solution of
a first order system

i

(2) t=1f(t,2), z=(@,..,2"

which remains in a given domain on its entire maximal interval of existence.
Our discussion is based on a known result from topology (Lemma 1 below)
and our results are in the spirit of Wazewski’s topological approach to
similar questions. By applying our technique to second order equations
we can obtain some of Opial’s results a little more easily than he did,
but his strongest theorems require at least as much work with our methods
as with his. On the other hand, we feel that our technique can more easily
be extended to higher order equations and systems.

Our basic lemma, found in its dnal form involving closed sets in
(4], p- 137, is the following:

LeMmMA 1. Let M, and M, be open subsels of m-dimensional Euclidean
space E™, with m > 2, and let N, and N, be (connected) components of
M, and M, respectively, with N, ~ N, not connected. Then M, v M, # E™.

We shall consider the system (2), where & and f(¢, ) are real n-
dimensional vectors, » > 2, and (¢, #) is continuous in an open subset £2
of E"*'. We assume that through each point (¢, 2,) of Q there passes
a unique solution x(-,t%,, ;) of (2), so that z(¢, ¢, ) is continnous in
(1,4, x,). Let ©° be an open connected set with £2°C Q. (@= closure
of () Following {3] we shall call a point (i, 2,) € 920 = 9— Q0 an egress



202 S. P. Hastings

(ingress) point of 0 if there exists an &> 0 such that (¢, z(¢, 1y, 2,)) € 20
for ty—e <t <ty (f,<t<t,+e). If we can choose ¢ so that in addition

(1, @ (2, 1o, @) ¢ 2 for ty < t < ty+& (lb—e <t<1), then (f, ) is called
a strict egress (strict ingress) point of (2. Denote by £2¢ (£2) the set of
egress (ingress) points of £2°, and by 23, (2a1) the set of strict egress (strict
ingress) points of . If, for some (¢, ¢, =), (t, z(t, 1, a:l)) € 23 (5., ete.),
we say that (-, 1, #,) meets 2f (2, ete.) at (t, z(t, 4y, ).

Let § be a subset of £2° which is homeomorphic to E™ for some
m,2 <m < n Let

F = |(t,, 2) ¢ 8|(t, 2(t, ,, ®,)) € 22° for some > 1},
G = {(t, %) € S|(t, 2(t, 1y, 7,)) € 842 for some 1 < 1} .

Since 842° is closed, we can define maps my: I >3 and =_: G -0
by setting m.(i,, #,) equal to the first point (¢, z(2,t,, ), 1 > t,, after ¢,
at which z(-,¢,2,) meets 96° and =_(1,,z,) equal to the last point
(t, z(t, 4, 2,)),t <t, before ¥, at which (-, 1,,x,) meets aQ° Then

ay: F>0) and no: G0,

THEOREM 1. Suppose that the image sets n.(F) and n_(@) are each
disconnected :

4 (F) = Q1w @y, Q1AQ2=Q1ﬁQz=01 @, #9, Q2¢@,
ﬂ_(G)-———RluRg, ElﬁR2=R1ﬁR2=g, Rl?éG, Ic3¢®-

. Suppose also that the inverse images 7ni'(Q), 73 (@), n'(R,), and
n_'(R,) have components S,, 8,, T,, and T,, respectively, such that T; ~ 8;
# ﬂ; 'i; ] =1,2. .

Under these conditions, if n,(F)C Q% and m_(@) C %, then there is
a potnt (1, x,) € 8 such that (t, @(t,t, ml)) € {0 on the whole maximal interval
of existence of the solution = (-, 1, 2,).

Proof. The theorem follows from Lemma 1 once we show that the
sets 7,'(Q¢) and n_'(Ry), 4= 1,2, are open relative to §. Suppose, for
example, that (7,()e ”II(QJ- Let n(r,{)= (t07 Z(ty, 2(o, T, C)) € 2o
and pick ¢ > 1, such that (t, (f, 7, ) ¢ Q0 for fp<t<1t. Let

0 = min |(s,w(s,r,t))—02l, where we use any of the usual metrics
T8

on E"*' and the corresponding definition of the distance hetween a point
and a set. Then 6 > 0 and we can find a neighborhood N of (z, ¢) such
that if (z,, {;) e N, then

(85 2 (s, 70, &) —(s, @(s, 7, £)| < min {82, \(t @ (1,7, 0)) — 0}

for 7, < s < t,. This implies that N ~ S C#;'(Q,), so =3 (Q,) is open re-
lative to S.
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To apply Lemma 1, let M;= zn7'(Q:) v #_'(Rs) and let N; be the
component M; which contains 8w Ty,i=1,2. Then 8§; ~ T, and S, ~ T,
will be distinet components of N, ~ N, because 7n:1'(Q,) ~ #3'(Q,) and
A~ (R,) ~ n_'(R,) are empty. By Lemma 1, 8 —(M; v M,) = S—(F u Q)
is not empty, and this proves the theorem.

In order to apply this theorem to a particular problem it is necessary
to choose an appropriate *. Of course, one of the difficulties in this
choice is the determination of the set of (strict) egress points and (strict)
ingress points. We refer the reader to a paper [5] by Onuchic for a useful
set of criteria for this purpose.

To illustrate an application of Theorem 1 to second order systems
we consider the equations

:i:‘f(t,w,'l),
y=g(t,z,y),

where we assume that f and g are ¢* in ¢, x, and y for all (¢, 2, y). In ad-
dition, suppose that the following conditions hold:

(i) There exist a and b, with a < b, such that

o of ,
a‘{(t,a,y)+g(t,a,3/)a‘$(ha,y)<0 whenever  j(t, a,y) =0

and

Z—:(t, b,y)+y¢l(t,b, y)%(t, b,y)> 0  whenever f(t,b,y)=20.

(ii) There exist y, and y, such that 7 (0, a, y) (¥ —¥.) > 0 when ¥ # yq
and f(0,d,y)(y—y,) > 0 when y  y,.

(iii) For some 7' > 0, lim f(t, z, y) = — lim f(¢, #,y) = oo uniformly

y—00 Yy—r—oo
for a<e b, |t|< T, and ¢(t,x, y) is bounded for |t| < T,a L2 < b,
—oo <L Y < oa. ,

THREOREM 2. Under the above hypotheses the system (2) has at least one
solution (w( ), y()) such that on its maximal interval of ‘ewistence,
a<x(t)y<b.

Proof. We set = {({,2,¥)la<x<bd} so that 2= P, u P,
where P, is the plane & = a and P, is the plane & = b. Then by (i), 25 = Q%
and Qf = QY, and by (iii), P, and P, each contain points of both Q.
and Q. Let 8 = Q% ~ {(t, #, y)jt = 0}. Also, in the terminology of Theo-
rem 1, let Q,=n(F)n Py, Q,=7n. ()~ P,, B =m_(G)~ Py, dand
Ry==n_(G)~ P,.

From (iii) we see that for sufficiently large y and a < a < b,
7.(0, x,y) e P, and n_(0, x, y) e P,, while for sufficiently large values
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of (—y), and e <z < b, n.(0,2,y) ¢ P, and n_(0, x, y) ¢ Pp. This shows
that there exists M > 0 such that y> M and a<xz<b=(0,2,y)
e Q) ~ s (R,), while y<—M and a <z<b=(0, ,y) a7 (Q,)
~ - (Ry).

On the other hand, it follows from (ii) and (ili) that for any y > y,
there is an &(y) such that b—e(y) < ¢ < b=>n,(0, z, y) € P,. Furthermore,
(i) and (iii) imply that for # < b and b — x sufficiently small, z..(0, %, ¥5) € Py.
From this it can be shown that there is a semi-infinite ‘strip” o in S8
which is bounded above by the line = b and which intersects the line
¥y =y such that (0,x,y) ew=>n4(0,2,y)eP,. We let § be the com-
ponent of =;'(Q,) which contains this strip. Similarly we define S,, 7},
and T, and the above results show that the hypotheses of Theorem 1
are satisfied, thus proving Theorem 2. (See Fig. 1.)
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We remark that, as pointed out by Opial, the strict inequalities in
hypothesis (i) of Theorem 2 can be replaced by weak inequalities and
the regularity conditions of f and ¢ can be weakened. In fact, if the
Rystems
(3—n) “:;=.fn(t7m:?/)1

¥ = ga(t, %, y)
satisfy the hypotheses of Theorem 2 and f, ->f, g» —¢ uniformly in every
bounded subset of F? then there will be a sequence of solutions of (3—n)
which converges to a solution of (2) having the desired boundedness
property.

The same result can also be obtained by modifying Theorem 1 slightly.
To do this, we first define an egresgion (ingression) point of £2* to be an
egress (ingress) point (¢, ) e 2Q2° such that there is a I >t (I < t) with
(t, 2(f,t,2)) ¢ Q20 and (s, z(s,t,2)) ¢ for 1 < s X1 (I<{s+:<1). Denote
the set of egression (ingression) points by Q% (£1). In Theorem 1, then,
the condition that z.(F)C Qf and = (Q)C L) can be replaced by the
following two conditions:

(a) 7. (F) C @b, n_(6) C 2,
(b) 8¢ is disconnected, with @, in a different component of &0°
from @, and R, in a different component of &£° from K,.
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To see this, we note that if =.(v,{) ¢@,, then (a) and (b} allow us
to show that for some I > 7, (i, (%, 7, {)) ¢ 2° and |Q2—(s, x(s, 7, C))| > 0
for r < 8 <1I. Using this we can show as above that =3'(Q,) is open re-
lative to 8. Similarly, n7'(Q,), #="(R,), and z_'(R,) are open relative to S,
and the proof proceeds as before.
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