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Toeplitz operators for hypodirichlet algebras

by J. JANAS (Krakéw)

Abstract. In this paper we prove some results for Toeplitz operators defined in
the context of hypodirichlet algebras. We also give an application of these results
to Toeplitz operators in multiply connected domains in the plane.

1. Let A = C(X) be a hypodirichlet algebra, i.e., ReA has a finite
codimension in Cx(X) and the linear span of log|A~!| is dense in Cr(X).
If A is hypodirichlet on X, then every £ € Sp A (spectrum of A4) has a fi-
nite-dimensional set of representing measures M, and has a unique
logmodular measure m € M, [7].

Denote by L2(m) the standard Hilbert space of all complex m-square
integrable functions on X. We define the Hardy space H?(m) as the closure
of A in L?(m). For ¢ € L*(m) an m-essentially bounded function we define
the Toeplitz operator in H2(m) by

wa =P(9’f)7

where P: L?(m)—H?2(m) is the orthogonal projection.

Now we will characterize the C*-algebras generated by the families
1T} oero@m) 304 {Tg}oec(x)- To this purpose we apply the method developed
by Douglas [6]. This method reduces the above charaeterization to the
problem of computing the joint approximate point spectrum o,,(Tq,l,
cevy Tq,p) of a p-tuple of operators T, , ¢ =1, ..., p. Let M » stand for the
spectrum of L*(m). Denote by

A+ L (m)—>C (M o)

the Gelfand isomorphism. Let H*(m) = {p € L*(m), ¢-H?*(m) < H%(m)}.
It is easy to prove that H*(m) is equal to the weak-* closure of A in L*(m).
Moreover, using the results of [2] one can prove that

(a) M 0 = 0H*(m), where 0H*(m) is the Shilov boundary of H*(m),
"\
(b) H*(m) separates the points of M ;.
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We will need these facts later. Now we state the following
LeMMA 1. If ¢ eI-l°°(m), it =1,...,p, then

Ga(Tyy e ={(¢f)1(m coy @p(m)), m € My},
Proof. The lnclusmn On(Tppy ooy Ty,) < {gs(m), ..., &ap(m)), me M)

is obvious. To prove the converse mc]usmn assume that :p,(m) 0 for
i=1,...,p. For ¢> 0 denote by U; the neighborhood of m defined
by the conditions
lg;(m)| <& for meUg and i =1,...,p.
Let m be the measure on M« induced by m, i.e.,
m(f) = [fam for fe L=(m).

Let v>0 be in C(My») and assume that [vdm =1 and v(m) = 0 for
m ¢ U;. Now we have

j ipizodm = [ |pwdin< et fori=1,...,p.
Myoo
But for k =1, 2, ... the functions g, = v+1/k are positive on X, thus by
Theorem 10,3 of (2] there are f, € H2(m) such that |f,|*= g,. Denoting
M = sup (lg;ll) we get

1<igp
fI%Iszklzdm <e+1/k-M.

Since [1fel*dm = 1[k-m(X)+1, the above inequality proves that (0, ..., 0)
a,.(T SERTITY 8 ) and the proof is complete.
By the same method one can prove the next lemma:

LEMMA 2. If ;e A, ¢ =1,...,p, then
a'n(qul; ...,T%) = l(‘?’l(x)a seey ¢p(x))1x EX}'

Proof. A similar reasoning to that in the proof of Lemma 1.

Now we will apply the above lemmas to characterize the C*-algebra
VN
generated by {T },..~. Indeed, as we know, H™(m) separates the points

of M;«. Thus the set {py}, @, v € H*(m) is linearly dense in L*(m) by
the Stone-Weierstrass theorem. Since ||T,| < ll¢ll, for ¢ € L=(m), it follows
that the *-algebra generated by {T,},;~ is equal to the C*-algebra gen-
erated by {T },.geo(m - Next, note that each operator T, for ¢ € H*(m)
is subnormal. Thus applying the theorem of Bunce [6] and Lemma 1 we
get

THEOREM 1. Let A < C(X) be a hypodirichlet algebra. Denote by € the
C*-algebra generated by the family {To}perooim)- If J denotes the commutator
ideal for €, then the following short sequence

(0)>J > L=(m)>(0)

8 exact, where i is the inclusion, ¢ i8 a x-homomorphism and o(T,) = ¢.
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Proof. It is enough to note that o,({T,}y~) is homeomorphic to
M,~; and this follows from Lemma 1 and the above remarks.

In the same way using Lemma 2 one can prove the next theorem.
THEOREM 2. Let A < O(X) be a hypodiriohlet algebra. Denote by €,

the C*-algebra generated by the family {T,},ccx)- If I, denotes the commutator
ideal for €,, then the following short sequence

(0)~>J, 3%, 50(X)~(0)

is exact, where i, is the inclusion, g, ts a x-homomorphism and o0,(T,) = ¢.

One can extend the above theorems to the matrix case by the same
method as in [6]. We will not formulate the full generalizations. Instead,
we will give two simple corollaries; compare [6], p. 16. Let M, be the
- algebra of all complex n X7 matrices. Let us recall that for any C*-algebra
A, the tensor product A ® M, is naturally isomorphic with the C*-algebra
of all » Xn matrices with elements of 4. Let Ly (m) be the C*-algebra of
all m-essentially bounded funections on X with values in M,. For any @
e L3; (m) denote by L, the operator of multiplication in L*(m)® C".
Let T, be the matrix Toeplitz operator in H?(m)®C" associated with &.
We have the following corollary; ecompare [6].

COROLLARY 1. If @ e L3 (m), then o(Lo) < 0,(Ty), where o,(Ty) is
the essential spectrum of T,.

Proof. Let ¥, be the C’-algebra generated by {T"}“LB'} (m)"
We identify €,, with ¢ ® M, (notations as in Theorem 1). Denoteﬂby

7: € >y [H (Hin(m) ()

the canonical projection. For @ e Ly (m) the operator Ty is Fredholm iff
n(T,) is invertible in € [ (Hgn(m)). Therefore, it 0 ¢ 0,(T,), then
n(To) is invertible in €, |# (Hgn(m)) and, what is more, it is invertible
in €, /[I®M,. But €, [IQM, is isometrically isomorphic to L% (m),
and so & is invertible in L3 (m) and 0 ¢ o(Lg).

COBROLLARY 2. If @ € L35 (m), then Ty is a compact or quasi-nilpotent
operator iff ® = 0.

Proof. In both cases the essential spectrum of T,, ¢,(T,) = {0};
hence & = 0.

2. Now we will give an application to the Toeplitz operators in the
Hardy space generated by A = R(X)|,x, where X < €<s compaet and
C\X has finitely many components. E(X) denotes here the Banach
algebra of all functions on X which can be uniformly approximated on X
by rational functions with poles outside X. 1t is well known [7] that 4

) J(‘(Ezcn (m)) denotes the ideal of compact operators in Hzcn(m) = H (m)®@C".
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is a hypodirichlet algebra on dX. Let z € X and let m be the logmodular
measure on 0.X for the functional R(X) 3 f-—f(z). Obviously, H2(m) does
not contain real functions different from constants. Therefore it is easy to
prove that the C*-algebra ¢ generated by {T,}.ccox) I8 irreducible. Next,
note that o(T,) = X and 1 is a cyclic vector for 7,. By the result of
Berger-Shaw, the commutator T3 T, —T,T: is compact ([3], Theorem 1).
It follows that the commutator ideal J for ¢ is equal to the ideal of
compact operators X (H2(m)) in H?(m). Indeed, since €0 (H*(m)) # {0}
and ¢ is irreducible, # > ¥ (H2(m)), [5], Theorem 5.39. Denote by
n: €~ A (H?(m))

the canonical projection. The element =(T,) is normal in ¢/x (H 2(m)).

Since #(p) is generated (as a C*-algebra) by =(T,), it is commutative.
Thus J < & (H?(m)). But % (H%(m)) cannot contain non-trivial closed
ideals and so ¢ (H?(m)) = J. On the other hand, we know that o,(T,)
= 90X ; hence applying Theorem 2 we get

THEOREM 3. Let X < C be a compact set. Assume that C\X has finitely
many components. There exists a x-homomorphism g from € onto C(0X)
such that the following short sequence

(0) 2 (H2(m)) 5€5C(2X)~(0)
is exact and o(T,) = ¢.
Remark 1. The above theorem was proved by Abrahamse in the
case 60X is equal to a finite number of analytic Jordan curves [1].
As an immediate consequence of Theorem 3 we get the equality
0.(T,) = ¢(0X). How to find o,(T,) for y € L*(m)? By the results of
Clancey—Morrel [4] and the Reduction Theorem of Abrahamse [1], p. 282,

one can describe ¢ (T,) for y = x5 -g, where y is the characteristic function
of E < 0X, g €C(0X) and 06X is a finite union of analytic Jordan curves.

Remark 2. Note, by the way that the set of invertible Toeplitz
operators T, with continuous ¢ is norm-dense in the set of Fredholm Toep-
litz operators of index zero. This follows by the result of Widom [8],
Corollary, since for f # 0, ¢ # 0 in H?(m) the produet fg # 0 in H'(m).
The last fact can be easly proved using the characterization of an invariant
subspace for R(X) in H'(m), given in [2].

We conclude with an application of localization technique for T,
with ¢ € L (m) (first stated and applied by Douglas). In the case 0X = oD,
the closed unit circle, Douglas applied localization technique and obtained
a local criterium on ¢ € L*(m), which guarantees that T, is Fredholm.
It turns out that it is possible to extend this technique to our situation.
We shall not explain this in detail; the interested reader should consult
[5], p. 196-199. We only point out that this possibility follows from the
facts which we now describe.
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(i) For any AcdX, 0F; < (& € Mywyy, #(8) = A3AMpmy, # (B},
where A : L®(m)—>C (M) is the Gelfand transform. '

(ii) The algebra ¥¢,/X (Hz(m)) is contained in the centre of
€| (H?(m)), where we have used the notations from Theorems 1 and 2.

Ad (i). To prove (i), note that for any A€ 06X the functional ¢&;:
R(X)> f->f(4) extends to a complex multiplicative linear functional 7,
on L>(m) (recall that the Shilov boundary of B(X) is equal to dX!). Thus

) = 4(&) = &) =1, e, OF;  {0).

Ad (ii). Since. R(X) is hypodirichlet and for any ¢ € C(0.X) the operator
T, T,—T,T, is compact, one can check that

(%) r,T,—T,, is compact for y e L®(m) and ¢ € C(0X).

If a ¥,/ (H?*(m)) and b e¥/# (H2(m)), then we can write a = =(T,),
b =a(T,+ V), where y € L®(m), ¢ € C(0X) and V € J (commutator ideal
for €). Now using (*) we get

ab = n(T,)a(T,+ V) = a(T,(T,+ V) ==a(T,T,+ VT,)
= x((T,+V)T,) = ba,

which proves (ii).
The following corollary is a generalization of Corollaries 4.7 and 4.8
of Douglas [6]. The proofs are the same as in Douglas’ work.

COROLLARY 3. If ¢ € L*(m), then T, is a Fredholm operator if and only
if for each A € 0X there exists y € L*(m) such that T, is a Fredholm operator
and Y —@ lox, = 0.

COROLLARY 4. If ¢ € L®(m) and for each A € 0X there exisls an open
disc K such that A € KnoX and 0 i8 not contained in the closed conver hull
of p(KnoX), then T, is a Fredholm operator.
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