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On integrable bounds for differential equations

* by A. Apamus (Krakéw)

In this note* we discuss the relation between two types of bound-
edness assumptions for right side members of ordinary or partial differ-
ential equations. In the weaker assumption, boundedness by an integrable
function of one real variable and, in the stronger one, boundedness by
a constant is supposed.

We shall prove that one assumption can be reduced to the other.
To start with we make the following remark. Let be given a partial differ-
ential equation of a finite order k:

u . ou *u
(1) W= t,a:l,...,mn,u,a—w,f,...,a—wz .

We suppose that for |t| < a,a > 0, R = (ry, ..., r,) arbitrary (p being
a suitable integer) the following inequalities hold:

{2) |, B) < F(1),
(3) |Df (¢, B)| < F (),

where Df denotes suitable derivatives in respect to B and F({) is an in-
tegrable function,

We claim that there exists a mapping
{4) 8 =o(t)

of the interval |f| < e onto the interval |s|<y (y = [F(u)du,y > 0),
transforming (1) into the equation 0

(5) & _ (s,ml,...,a: 0, ak"’),
0s " o, ozt
‘where g has the following properties:
{6) lg(s, B)| <1,
{7) [Dg(s, B)]<1 for ]3| <y almost everywhere.

* I would like to express my gratitude to Professor A. Pli for suggesting problems
considered in this paper and for his valuable advice.
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Without lass of generality we can assume that F(¢) > 1 and we define
t
e(t) = [Flu)du (Y.
0

Functions ¢(f) and its inverse ¢ !(s) are absolutely continuous on
suitable intervals.

We have
4
dﬁ;i) = F(t) for |t| < a almost everywhere,
-1
d¢ds(3) — F(q)—l(s)) for [s| < ¥ almost everywhere.

Function (s, X) = u(¢™'(8), X), X = (#y,...,@,), satisfies the
equality
n(s, X) = ufp~i(s), X) 2L

Therefore v satisfies the equation

'v,(s,X) = g(sy Xs'v’ )7
where

1 “()
g(s, R) f(<P (8), R)

”’( 8)

-1 -1

fle™ (%), B) < Flo™ @) g=rgy (8))

which proves that g is bounded. Analogous estimations may be applied
to any derivative Dg. Using this remark, certain theorems on differential
equations with right side members bounded by constants can be generalized
to thé case with right side’ members bounded by integrable functions.
As an example we shall give an application to a system of first order partial
differential equations. We shall deal with the following system of differ-
ential equations: '

(8) wi=r7t, X, 0,0, @G=1,...,m),
where
= (uly .., u™), U =(u,..., u)
with conditions
(9) u'(a;, X) = 0'(X) for X arbitrary ({ =1, ..., m).

(1) The same mapping has been used by Kasprzyk and Myjak [1].
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THEOREM. Suppose that functions f'(t, R), i =1, ..., m, measurable

in 1 are of class ¢* in B = (ry, ..., Tpyon) and salisfy the following ine-
qualities:

If' ¢, BI<F@), If(t RI<FQ@,

10 . S mi2n
(10) lf:,(t,R)-—f:,.(t,R)léF(t)Z 17— Tl

k=1

where F (1) is an integrable function for |t| < a, R and R arbitrary; .
(11) w'(X) are of class ¢ in X;

LX) <L, leb(X)<L,
(12) o - = _
|0 (X)— b (X) < L D 2e— %

k=1

for X = (®,...,%,) and X = (Z,...,%,) arbitrary (i =1,...,m;
j=1,...,n).
Then, for an arbilrary system of numbers a,, ..., a,,
(13) la;] < B,
f being a constant for which

fF(u)du =4,

where

A = min(y, {4n(1-+nL)[(1+mT)* +m(1+2L)]}™Y
and

T = 2L+min(4y, }),
there exists a solution U(t, X) = (u'(t, X), ..., u™(t, X)) a'bsolutely con-
tinuous in t, of class ¢! in X, satisfying system (8) for almost every te[ —§, f]
and every X, conditions (9) and the inequalities
|'“i(t’X)l<K1 [’ui,(t,X)lQT,

(14) , . — >
k(¢ X)— i, (8, X)| < (2L+1) ) o— .

k=1
Proof. Applying mapping (4) to system (8) we get
v =g'(s, X, V, V), where V =(v,...,9™),

Ve = ('v:‘zl’ ooy Xp).
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Functions ¢'(s, R) satisfy the conditions
Igil <1, Ig::-,l <1,
(16) _omam
97,8, B)—gt.(3, BY < D Ime—7l
k=1

for almost every |8| < y and arbitrary R and R.
Numbers a; are mapped on b; and conditions (9) give

(17) o' (b;, X) = o*(X).
Consider now an auxiliary system
(18) (”ih)a =g™(s, X, V1, v,
where
1
ih I .
(s, B) =5 f,, ¢'(v, B)du;

o= (0%, 0™, TR = (o, L, o).

Functions g** are continuous in s, of class ¢! in R and satisfy (16).
Therefore the theorem of A. Pli§ from [2] can be applied. Hence
there exists a solution v™ (s, X) of class ¢!. Moreover, it satisfies the ine-
qualities
n
@9) s, DHIST,  [ofs, X)—of(s, D) < @L+1) Y |X,—X,|
k=1
for arbitrary X, X, and for |s| < A. It is easy to see that |v™(s, X)|
<L+2y =K.
Functions v* (4 =1,...,m) are equicontinuous and uniformly
bounded. By Arzela’s lemma there exists a sequence h, -0, if ¥ — oo
such that v* = v are uniformly convergent

(20) (s, X)30*(3,X) as k—>o0 (i =1,...,m).

Owing to the uniform convergence of functions v*, and v and our
assumption that the functions g° are of class ¢! in R we can estimate the
difference as follows:

g™ (s, X, V¥*(s, X), V¥(s, X))—g*(s, X, V (s, X), XL(s, X))

a+hy
5| | et X 70, T, Vi, D)=, X, V6, D, Vits, D)
a-hy

< M{Zm‘ [v* (s, X)— (s, X)|+ Zn lvi’;(s, X)—vij(si X)l} -0

qml F=1

as k — oo.
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Thus we derived the equality:
(21) gik(sa X, Vk("’ X), Vg‘(": -X))
= gik(37 X, Vs, X), Vﬁ:(s; -X))'I‘El(k’ s, X)

8+-hy
1 .
== [ ol X, V6, D), Vits, Ddet ek, s, D),
B, o

where &,(k,s, X) >0 as k — oo.

In the following we shall show the uniform Lipschitz continuity
in X of functions (s, X).

Functions ¢* are of class ¢! in B and functions v* and vii" satisfy
Lipschitz condition in X. Hence

(22)  |[v*(s, X)— (s, X)|
= Igik(sv X, V"(s, X), Vik(s: X))"‘gik("” zv Vk(s’ X): V::k(sr X)“

n
<0 ) lo—z,
=1

where ¢ = M+mM+n(2L+1).
The functions vi(s, X) satisfy Lipschitz condition in X too.
Now we show the inequality

(23) |0z, (8, X)— (s, X)| < Cls—3].
For demonstration we use the expression

: .
(8, @y ooy @it hy .oy @) — (8, Tyy ..., Ty) _
h

B (8, Byy ey Byr by oony @) — 0 (8, Bay o eny Ty)
h .

By mean value theorem and (22) we have inequality

Ii =

Li<Cls—3l, L —lo(s, H)—ok@ X)| as kb0

and (23) is proved.
In the following we estimate the next difference:

1 a+hy ‘ . '
2_;,,:‘ f [¢(x, X, V(s, X), Vi(s, X))—g'(z, X, V(z, X), Vi(z, X))]dr
s—hg

8+hy m
1

<z f M(; o (s, X)—o*(z, X)|+ i’ o, (s, X)— ok, (7, X)I)dr -0

2h
k 8—Ry j=1

a8 h, — 0 in virtue of (23).
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The relation

1 8+hy
@) = [ Gl X, Vi, X), Vi, D)
kl-hk
1 8+4-hy
—alt, s, Dt [ o X, Vie, D), Vi, X)dr,
2h,,s_hk

where ¢,(k, 8, X) >0 as &k — co holds.
Let e(k,s, X) = &, (k, 8, X)+ &,(k, 8, X). By (21) and (24) we have

(25) gik('g’ X, Vs, X), Vs, X))

8+hy t
1 .
= ok, 5, X)+ 5 f ¢z, X, V(z, X), Vi(z, X))dx.
ka—hk

The functions g(s, X, V(s, X), Vi(s, X)) are measurable in s for
any X because g°(s, X, ¢, ..., ¢m,n) aTe Mmeasurable in s as well as Lip-
schitz continuous in ¢;, and v*(s, X) are Lipschitz continuous in s and X.

Therefore the right side members of (25) tend to g(s, X, V (s, X),
Vigs, X )) for almost every s. Hence there exists a system of functions
v(s, X), ..., v"(s, X) satisfying equations (15) almost everywhere and
condition (17). Functions ¢!, ..., v™ are continuous and of class ¢! in X.

We get in the limit

|”i(3yx)|<K! |'vi,-(8sx)|<1' (1 =1,...,m),

[0, (8, X)— i, (8, X)| < (2L+1) D & —

k=1
. for || <y, X, X arbitrary.
Put

w(t, X) = v(p(t), X),
u; = vi{p(t), X)-¢'(2)
= glo(t), X, V(p(t), X), Vi{o(t), X))-9' (1)
=fit, X, U(t, X), UL(t, X))

for |t| < B almost everywhere.

Functions v*(¢, X) are absolutely continuous in s, therefore u'(¢, X)
= v*(p(t), X) are absolutely continuous in ¢.

Thus the proof is completed.
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