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1. Various sufficient conditions are known in order that the n xXn
matrix

(1.1) A = (ag)

should be regular. The germ of them is the idea of making the diagonal-
term preponderant and its simplest form is expressed by the theorem of
L. Lewy-Minkowski-Hadamard (), according to which the inequalities

n

(12) 4, a,|— dla)>0 (v=1,2,..,n)
j=1
i#y

imply the regularity of A and by the variant, due to Miiller (2)
(1.3) |det 4| > 4,4, ... 45 .

This idea was transformed and refined in various ways by A. Ostrowski,
O. Taussky-Todd (?) and others. In what follows we shall present a suf-
ficient condition for the regularity of A which is of an enfirely different
character. This will be a simple consequence of the solution of a class of
minimum-problems concerning determinants of order ». In order to
formulate them conveniently we shall call the elements of the form

(1.4) Gpine  (»=1,2,..,0—h)

at a fixed non-negative h as forming ‘‘the h't skew-line under the diago-
nal”’ and those of the form

(1.5) o1 (»=1,2,..,0=1)

(*) For the references see the interesting book of M. Parodi, La localisation des
valeurs caractéristiques des matrices et ses applications, Gauth. Villars 1959.
(*) See Parodi 1. c.
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at a fixed non-negative ! as forming ‘‘the It skew-line above the diagonal”.
Now let j be a fixed integer with

(L.6) o <j<[(n—1)21;

the positive numbers e« and f being given we consider the class
I'n = I'n(§, a, ) of all determinants D, of order » whose elements are not
less than a in the diagonal and in the 2yt skew-lines under the diagonal
(r=1,2,...,7), not less than B in the first skew-line above the diagonal
and equal to 0 elsewhere. In other words the class I, should consist of
the determinants D, of order n with

(1.7) Qpiory=>a (k=0,1,2,..,7;,v=1,2,.., n— 2k)
and
(1.8) Gptr1 = (v=1,2,..,n—1)
and otherwise 0. Restricting ourselves for the sake of simplicity to the
case _
j = [(n—1)2]
we assert

THEOREM 1. If D, e I'h([(n—1)/2], a, B), then

g n _ / P n
(1.9) D, > a_{(a+ Va +4ﬁ’) B (a Va +4ﬂz) }
Va?+ 452 2 2

We have equality in (1.9) if and only if we have equality in (1.7) and (1.8).

In 2 we shall give the proof of this theorem, in 3 and 4 we shall
discuss some further problems which emerge quite naturally after theo-
rem I, and we shall prove theorem II, which throws some light upon
the structure of the determinants.

I am much obliged to T. Gallai for his valuable remarks. (For
a final remark see the end of the paper.)

2. The proof of theorem I is based on the observation that in D,
owing to the configuration of the 0-elements all terms belonging to odd
permutations vanish i.e. D, consists exclusively of positive terms. This
evidently holds for » =1, 2, 3; suppose that it holds for n < ¥ —1 with
N >4, i.e. that for » < N—1 D, is a sum of positive terms. Expansion
according to the first row gives
0 a3 0 0
Ay Ay Gy O
Dy =ayDyn_1—a,,| 0 0 ay ay ...|;
a5 Azs 0 ag ...
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expanding again according to the first row, we obtain
(2-1) DN = alll.DN—l'!' ananDN_z ]

which owing to the induction hypothesis and the positivity of the ay’s
proves the observation. But then (1.7) and (1.8) give

(2-2) -DN = aDy_, +ﬁ2DN—2 .
Hence if the sequence D is defined by

Df=a, D;'=az,

2.3 .
(23) Di—aDi +fDis (n>3),

then evidently we have D, = DY, D, = D7 and thus Dy > D} for N > 1.
Since from (2.3)
Dy =2 {(a+ V a2+4ﬂ=)"_ (a— v’a’+4ﬂ")"}
V& +4p 2 2 ’

(1.9) is proved. The remark in the theorem concerning the equality-sign
follows evidently.

8. The simple proof of theorem I suggests many natural problems.
Obviously analogous extremal theorems hold for all I';-classes of de-
terminants of order n where the configuration of 0’s ensures the vanishing
of all terms corresponding to odd permutations. Let us call such a con-
figuration a good ome. The first question is the following. The number
of non-vanishing terms in D, ¢ I'y, as can easily be seen from the proof
of the theorem I, is

Is there any good I';-class of determinants so that the number of non-
vanishing terms in D, ¢ I'y is greater than A,? I thought that the answer
to this question is negative; but, as T. Gallai remarked, in the case n = 7
(but not for n < 6) this conjecture is certainly false since 4, = 13, but
the 0-configuration

- -000 -0

0O.--000 .

.0 --000

0 -0 . . 0 (| (atthe empty places positivo

elements) g

00-0 )

000 -0 ..

. 000 -0

4.
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is a good one and the number of non-vanishing terms is, as can easily be
checked, 24. Thus the following interesting question arises: which are the
good I;-classes with the maximum-number of non-vanishing terms?
To another question, namely what is the minimum-number of 0’s in
a good I's-class, the answer is, as T. Gallai remarked, n(n—1)/2. For the
proof it is enough to remark that if there is a non-vanishing term in D,
at all, then after a suitable change of rows and columns one can make all
elements in the diagonal non-vanishing and then for all 1 <i#k<n
the relation

(3.2) ag i =0

holds, for if for a certain pair ¢ = 4,, k = k&, (i, # k,) (3.2) is false, then
obviously the term
n
a‘ilklakll'l ” aw
v=1

v#i)

v#ky
is a non-vanishing term in D, belonging to an odd permutation. Hence
the minimum-number is > n(n—1)/2; the number of zeros of the *trivial”’
I'n-class given by a; =0 (2 < k) is = n(n—1)/2.

4. In connection with these questions it is natural to ask a question
which throws some light upon the structure of the determinants: what is
the maximum M, of the difference of the number of non-vanishing
terms belonging to even resp. odd permutations at various systems of
0’s? In comparison with the previous remarks the following theorem is
somewhat surprising

THEOREM II. The inequality

M, >

g1 Vm
holds.

At a fixed 0-configuration the (common) difference of the numbers
of the non-vanishing terms belonging to even resp. odd permutations
is given by the determinant having as elements exclusively 1’s at the
remaining places. Hence the problem is identical with that of finding the
maximal determinant of order n consisting of the elements 0 and 1. Let
this maximal determinant be D} and let the maximal one with the ele-
ments 41 be A43; in the latter we can suppose without loss of generality
that the first line consists exclusively of 1’s. By adding the first row to
the k2 one as the k*2 row the elements become 0 or 2; hence factoring
out 2 from each row we get

a5 =2""'Dy,,
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where Dy, is a determinant of order » consisting exclusively of 1’s and 0's.
Thus

But as I have shown () together with G. Szekeres among others that
the quadratical mean-value of all determinants of order » consiting of
+1% is /n!; since obviously
a5 > l/m )

Theorem II is proved.

The proof is evidently an existence proof; it would be desirable to
give explicitly a system of 0’s with the required property.

Added in proof. (12 Apr. 1962) According to an observation of dr M. Kunkuti
the determinants of the form

ayy -1 0 0 0
G Qqg -1 w 0 0
(4_1) e + s e s s e s s w e s s s e e
Gy Op-1a Opgy v @poppr —1
@n1 @3 Qpy e @ppg Cun

have also the property that a,, >0 (n =i >k > 1) implies the positivity of all non-
vanishing expansion-terms. Hence for these determinants a similar extremal-theorem
could be formulated.

(®°) Eqy szélsGértékfeladat a determindns-elméletben (in Hungarian with German
abstract), Mat. és Term. Tud. Ert. (1937), p. 796-808.
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