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Characterization of some tensor concomitants
of the metric tensor and vector fields
under restricted groups of transformations

by M. A. McKIiErNAN and H. RicHARDs (Waterloo)

Introduction. In [3] it is shown that any odd-ranked mixed tensor
concomitant of the metric tensor must vanish identically if all non-
singular transformations are allowed. However, this result no longer
holds if one is restricted to the “proper” transformations (by which we
shall mean those with positive Jacobian determinants), the Levi-Civita
symbols in V3 being a counter-example. Here we shall investigate relative
tensor concomitants of the metric tensor, its first and second partial
derivatives, and of a vector and its first partial derivatives; the results
are valid even for restrictions of the above meritioned “proper” transfor-
mations. The proofs are purely algebraic, and in that they require no
regularity assumptions they extend those found in [5], [6], [10], [11]
and [12] concerning Lagrangians and associated field equations.

A basis for the derivation of results herein lies in the following three
observations. Firstly, any symmetric matrix with non-zero determinant
may be diagonalized [2] (p. 244) to the form ¢ = diag[+1,..., +1,
—1, ..., —1] by a matrix with positive determinant; that is, if ¢ = [g;]
is such that g;; = ¢g,; and det(@) # 0, then there exists a matrix B with
det(B) > 0 such that
(1) G = BoB7,

where BT denotes(!) the transpose of B.
Secondly, if § is any matrix satisfying 8o8T = o, we must also have

(2) G = B(Sc8T)B”.

(1) Throughout this note, the following notations will be used:

G = [gy] is a symmetric metric tensor;

4 = [A;:] = [0x'/07’] is the Jacobian matrix of the transformation #' — a¢;
Al = [Al;:] is the inverse matrix of A4;

‘,; denotes partial differentiation ;

‘Y’ denotes covariant differentiation;

M7 denotes the transpose -of any matrix M.
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We may assume that in (2), det(8) >0 since if 887 = ¢ for diag-
onal ¢, so also S80878” = o, where S is the identity matrix with one
diagonal element replaced by —1.

Finally, if ¢ is any square matrix of dimension greater than two
such that

868" =  whenever 8087 = ¢ for det(S) >0,

then o is a scalar multiple of o. More precisely,

Basic LEMMA. Let ¢ = diag[+1,..., +1, —1,..., —1], where t =
=0,1,...,n. ! ¢

If 8o8" = o whenever So8T = ¢ and det(S) > 0, then o = 7o, where
for n>2, v =[kél], a scalar matriz, whence o = ko, and for n = 2,

k1 ' k1
1=[_l k] for t =0,2, and r=[l k]fort=1.

Proof. (The shortened proof below is due to A. Zajtz. The authors
also wish to thank H. Davis for his help in the original proof.) The matrices
8 satisfying 808”7 = ¢ and det(8) > 0 form the proper Lorentz-group
L*(n,t) which, for ¢t = 0, n, forms the proper orthogonal group 0% (n).

Clearly

(%) 0 56t
satisfies
(**) SC =08

since ¢ = 987 and o~ = (87)'¢~'8~! implies o' = Soo~'8~!, whence
(**). Hence ¢ commutes with all of L*(n,?). Since C commutes with
arbitrary even reflections, ¢ must be diagonal for =» > 2; that is,
C = diagley, ..., ¢,]. If ¢, # ¢,, then by (**), § = [s;] has s,, =38, = 0,
and more generally, every S would be the simple sum of two matrices;

that is,
8,0
S — 1
o)

which is certainly not true for L*(n,t). Hence C is a scalar matrix (for
complex matrices this follows directly from the irreducibility of L* (n, t)).
For n =2 we have for t = 0,2, Se0*(2) while for t = 1, SeL"(2,1)
and the form of C results from (x*).

THEOREM 1. The only scalar concomitant L(g;) of a symmetric metric
tensor with det(g;)# 0 under the “proper” transformations is a constant
(dependent on the signature of the metric).

Proof. The transformation lJaw of @ in co-ordinates ' to G in co-
ordinates 7' at a point p, in V” may be written in matrix form as @ = AGA”,
where A is evaluated at p,. The transformation law for the scalar con-



Oharacterization of some tensor concomitants 141

comitant L(@) may be written L(G) = L(@) = L(AGAT). Hence by (1),
L(Q) = L(BaB”) = L(o) at p,; since this holds for every p,, the lemma
follows.

Similarly, we may prove

THEOREM 2. Any rank two covariant concomitant of the metric tensor
in a space of dimension greater than two must be of the form Ty (gm) = kg
relative to the “proper” transformations, k being a constant (dependent on
the signature of g¢;).

Proof. Defining the matrix o & [T;], we may write the transfor-
mation law of T, (g,,) in matrix form as a(A6G4T) = As( @) A". By (1)
we may choose a co-ordinate system in which G has the diagonal form
o = diag{—1,..., —1,1,...,1} at some given point p,. But then
o(8a87) = So(0)87, and the basic lemma implies ¢(c) = ko when n > 2.
Since this is a tensor relation, it follows that T;(g,,) = kg;; at p, in every
co-ordinate system. That & is independent of p, follows from Theorem 1.

By applying the basic lemma in the case n = 2, one obtains the
following

ExTENSION OoF THEOREM 2 (S. Golab and A. Zajtz). Any rank two
covariant concomitant of the metric tensor in a space of dimension n = 2
18 of the form

— 01
Tii(9as) = kgij+l'/(g) ey where e = [e;] = 10l
The above proofs illustrate the algebraic nature of the proofs of the
more general theorems given below.

Results. For the sake of continuity, the results obtained herein
are listed below without proofs; the latter will be found in the next section
of this note. It is assumed throughout that det(g;) # 0.

1. Any relative tensor concomitant of a symmetric metric tensor
having rank both odd and less than the dimension of the space is a null
tensor relative to the restricted group of “proper” transformations.

" 2. Again relative to “proper” transformations, any covariant relative
tensor concomitant of a symmetric metric tensor having rank odd and
equal to the dimension » of the space is a constant multiple of the Levi-
Civita tensor e;;, ;..

S. Golab has indicated to the authors the following immediate
consequence of result 2.

THEOREM (S. Golab). In a space of odd dimension n, there does not
exist any (non-trivial) tensor densily of odd degree less than n.

For if T;, .1, Were such a tensor, ¢ odd < n, it could be “completed”
to a temsor T, , by multiplications with g;. But then by result 2,
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n—q
Tilmiqgﬁrl vos Gigrs = Keiy..iy Where 8 = T

and since the left-hand side has at least two symmetric indices while
the right is completely skew-symmetrie, it follows that ¥ = 0, whence
T ilo.ciq = 0.

The following results are also proved algebraically, and they assume

the tensor character of the concomitants under only the “proper” trans-
formations.

3. Any relative tensor concomitant of a symmetric metric tensor
and its first partial derivatives must be independent of the first partial
derivatives.

4. Any relative tensor concomitant of a symmetric metric tensor
and its first and second partial derivatives may be written in the form

Tok ar(9y5 Biyw)y r and s being the contravariant and covariant ranks,
and R;; being the Riemann curvature tensor.

5. Any relative tensor concomitant of a symmetric metric tensor

and its first partial derivatives, along with a vector field X; and its first
partial derivatives, may be written in the form T71 7" (X,; X,;; gy)-

6. Any relative tenmsor concomitant of a symmetric metric tensor
and its first and second partial derivatives, along with a vector field X,
and its first partial derivatives, may be written in the form T7}- 7% (X;; X;;;
9is3 Bijur)-

It has been pointed out to the authors by S. Golab and A. Zajtz
that our proofs for Results 3, 4, 5 and 6 are valid not only for tensor con-
comitants but also for all possible objects (geometric or not) of the first class.

However, we will not pursue this generality.

Proofs of Results. We prove the above results in detail in the
following sequence of theorems; Results 1, 2, 3, 5 and 6 are proved respec-
tively in Theorems 3, 4, 5, 9 and 10, while result 4 is a direct consequence
of Theorem 8.

TEEOREM 3. Any relative tensor T71:7w(gy), covariant of rank s,
contravariant of rank r, and of weight p, where r+s i8 an odd number less
than n, the dimension of the space, is a null tensor relative to the restricted
group of co-ordinate transformations & o Z,i =1,...,n for which
J~! = det(02*/0%) is positive.

Proof. For a relative tensor concomitant of weight p, the transfor-

mation law is
-1

(4) TRt (g,) = JPAS . A% AT APTO (g

aj...aq

Let B; and §; be transformations as in (1) and (2), viz.
() gab=szBg°'cd1 [oeq] = diag(l,...,1, —1,..., —1],
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(6) 0w = 85800,  With det(83) = +1,

where the last assertion holds in view of the assumption det(S3) > 0.
The transformation law (4) then implies

-1

(7) Totmr(g) = det(BjPBil ... Bis By .. B”"*TZ} FACIN
-1

(8) Tt aer(og) = 8py ... Spa 8yt ... Sf::fTEi:::.,;(aab).

Consider the matrix [S§] formed by replacing two distinet diagonal
elements in the identity matrix by —1. Clearly [S?] commutes with
any diagonal matrix, and [S¥] is its own inverse; hence (6) is valid. Spe-
cifically, 87 is given by

= 0F— 200 08— 20,08 for 1< M #L<n

where “( )” indicates no summation; as indicated above 8 = 4§ if a,

b+Mor L 8% = —06%, 8% = — 6%, and 8285 = 62. For this choice
of 87, (8) may be written in the more convenient form
(9) T (o) = 8%, 8% L S SR (o).

Now, given any specific set of indices {m;} (k¥ =1, ...,7+8), since
(r+ 8) < n there exists an integer w in {1,...,7n} such that w ¢ {m,}. Further,
since 7+ s is odd, at least one of the {m,}, say m;, occurs an odd number
of times in the set {m,}. Clearly m; # w, and considering the particular
dp of (8) for which L = w and M = m;, we obtain, if m; occurs only
once say,

1 Tp Y — AM My 51
m+1...m5...mr+3(odb) 6'1] 6 amr‘l'l

(=0 . (O VTS T (0g)

5 ..
or
T, s(0a) = 0.
Obviously, as long as m; occurs an odd number of times, we will
obtain the same result. Substitution of this result into (7) yields

T;r.lllﬁ, (94) =0
a8 required.

THEOREM 4. Any relative tensor concomitont T, . (g;) having
rank n both odd and equal to the dimension m of the space is of the form
Try...mp (9i5) = Q&py..m,,, Where a is a constant, e,,,l m, 8 the Levi-Civita

symbol defined by e, .. l/m €m,...m,+ HLETE g = det(gz,) and e, 18
the permutation symbol.

Proof. Equations (7) and (8) now become
(10) Tony..mp (955 =Bc ... B Tcl o (T57)

1---Mp
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and
(11) Tml...mn(aab) = Sg’lll see Scﬂ,l;Tcl...%(o’ab)’
where o;; = diag[+1,..., +1, —1,..., —1]. Suppose, for a given set of

. indices {m,} in (11), one index is repeated. Then there exists an integer w
in {1,...,n} which does not occur in {m,}. Further, as in the proof of
the previous theorem, at least one integer m; occurs in {m,} an odd number
of times. Since m; # w, we may set L = w and M = m, as before, from
which it follows that the concomitant vanishes if an index is repeated. Thus
the only non-zero components are those for which {m,, ..., m,} is some
permutation of {1,...,n}.

From this point to (»*) it is necessary to consider separately the
cases:

(i) g;; is positive definite; that is, o; = 4 for 1,5 =1,...,n;

(ii) g, is not positive definite; that is, o; = d;; for ¢,5 =1,..., ¢,
and o; = — 46 for i,j = q+1,...,n.

(i) When g;; is positive definite, a second possible d; is

8 = 8 — ofany 88" — 8, 04 + 61,8, — % &,

where L and M are again two fixed integers in {1, ..., n}. Given a specific
set of indices {m,} for a non-zero component of T,, ., , L and M must
each occur only once in {m, ... m,}. If we suppose L = m; and M = m,,
then§,;‘ = 6 fora, b % m,; or m,-,gfnf = + 0p,» 2:%. = —6;',,],,;29'{,"1 = — &y,

and ;9},"‘ = 6;7. Substitution into (11) yields

Tml...mj...mi...mn(aab) = ‘zgfn.ll vee qu:'flj ree S:rt;i ore ‘2gc1r?uTc1...cn(aab)

= O O (—0C) L 0 T o (0u)

"'"'Tml...mi...mj...mn(aab);

that is, T’ m, (o) i8 skew-symmetric upon interchange of indices (since
we may cover all possible sets of indices simply by letting L and M take on,
successively, all possibles pairs in {1, ..., #n} and considering the resulting
transformations).

Since T, .m,(0x) i8 skew-symmetric and is non-zero if and only
if (m,...m,) is some permutation of (1,...,n), it must be a constant
multiple of the permutation symbol e, ., ; thatis, T, .. (9e) = aty  m,
for g;; positive definite.

(ii) When g, is not positive definite, the transformation 4§,",’ will leave

o4 invariant if and only if either L and M are both in {1, ..., ¢} or both
in {¢g+1,...,n}). Thus, using AE’?,‘ as above, we can show only that
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Tml...m,-...m,,;...'m,,,(adb) = '_'Tml...m;...m.j...'rrm(aab) when m;, m; are both in
{1,...,q} or both in {¢+1,...,n}.
We thus consider a third S§ defined by
3

12) 8
= 67— (1— cosh 0) 87, 6§™) — (1— cosh 6) 67, 659 + (8% 65" + 0% 6y)sinh §

which leaves o,, invariant if and only if either L is in {1,...,q} and M
isin {g+1, ..., n} or vice versa. For this transformation, we ha.ve S“ = 0p
for a,b # M or L,

§b = 6F— (1— cosh §) 6F + 63 sinh 6,
;9,1," = 8 — (1—cosh 0) 6 + 6Fsinh 6, 8% = 8¢ — (1— cosh 6) 6%+ 83sinh 6,

and
;S"}u = 0% — (1 —cosh 8) 63,1 6% sinh 8.

Since any non-zero T, .., (0,) must be such that (m,...m,) is
a permutation of (1, ..., n), there will always be some m,, m; such that
m; is in {1, ..., ¢} and m; is in {¢g+1,...,n}.

Letting m; = L, m; = M and substituting (12) into (11) we have

Tml..nn,;...m?'...mn(o‘ab)
=8 88 S8BT ()
=8 ... 8 (6”1 — (1—cosh 6) 87 4 &7 sinh 6) 875H1 ... 8711 X
X (a°7 — (1— cosh 0) 87, 4 &7} sinh 6) 65,?,#1 5f,¢,,Tc,...c,-...c,...c,,(0ab)
= (85, — (L— cosh §) &7% + &;¢. sinh 6) x
X (a’?&} - (1 - GOSh 6) 61071;,,'+ 6:7’11’ Si'n'h 6) Tml...mi_lcim,;_l_l...mj_lcjmj.}.l...m,,(dab) 4
Upon simplification, this becomes
Tomy...m...m5...mn () = (COShZ0 87 677 + sinh? 067 877 -
' + (05, acJ + 853, 8% )smh 0c0Sh 0) T ..c;...cs...mp (Ta) -

By summing over ¢; and ¢; and eliminating all vanishing terms, we
obtain

Tml.. Mg M. Ty (o'ab) = cosh? onl-“mi---mj'--mn (Gab) + sinh? GTml.,.m,-...mi...mn (dab)
or
(1—cosh?6) Tml...m.i...mi...mn(aab) = sinh? OTml...mj-...mi...m” (o)
which yields
Tmlm‘mjm,,(o'ab) = _Tml...mj...mi...mn(o‘ab) .
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Thus we have

Tml...mi...my-...mn(o'ab) = _Tml...m

i Mype .My, (aab)

for any two indices m,; and m; regardless of whether or not g;; is positive
definite.
Substitution of Ton,..np(Oap) = @y, into (10) yields

Tml...mﬂ(gij) = aB-ml Bcn'f,l.',,ecl...c,,, = ad-et(B;:) €m,...mp

and by (1) it is readily verified that V|g| = det B, whence the theorem
follows. (It should be noted that the above proof holds only at any given
point in the space, and conceivably, a could be a scalar function. By
Theorem 1, this scalar concomitant of g;; must be constant).

Note. We have, in effect, also determined the result for any mixed
relative tensor, since we may always lower the contravariant indices
of such a tensor, obtain the solution for this completely covariant tensor,
then re-raise the appropriate indices to get the required form.

In the proofs of the remainj.ng theorems we consider a specific point p,
in V", and transformations o « % for which A‘1p = &} at p,, while the
higher ordered derivatives A,,,, A,k,, etc. are arbztmry at p,. Hence any
relative tensor Il ;" remains invariant under the transformations to be
considered (since J = 1). It is therefore unnecessary to indicate the co-
and contravariant nature of the tensor concomitants considered, and
we write briefly 7-~-. Our transformations applied to the metric tensor
g;; then become

iy Ipo = gijlpn’
(13)  Fijklp, = (A5 07+ 6F A2) Gun+ gu,klpoi
(14)  Gypap, = (Afa 0] +AL AL+ A AG A A5 07) gap+ (A5 67 + A3 03) g+
+Ailgaj.k + A9+ Afai.ct 94, ktlog -

THEOREM 3. Any relative tensor concomitant T3l 2 (gy; Gi)y cova-

riant of order 8 and contravariant of order r, and of wef,ght P, must be inde-
pendent of g, for any symmetric g;; for which det(g;) #* 0.

Proof. We now further demand that A}, = —I7}, at p,. By (13)
we have

Fiik = —Lik9a;— kGt Gijc =0  ab p,.
Thus the transformation law of T--_ at p, yields T-ZZ(9:5 9ij.x)

= T'Z””(gy; 0); that is, T__~ must be independent of g, ; at p,. Since p,

is any point in V" the theorem follows.

Note. The above is equivalent to the assertion that it is always
possible to transform locally to the normal co-ordinate system in which
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the Christoffel symbols I'j, vanish at p,; further, the theorem to follow
simply asserts the existence of absolute normal co-ordinates [14]. How-
ever, our proofs may be of interest in themselves, since they are purely
algebraie.

For other references to Theorems 4 through 10, we note Schouten [13],
pp. 163-165, Moor [7], [8], [9] and Zajtz [15] and Lorens {4].

THEOREM 6. Given an arbilrary point p, in V"™ it is always possible
to choose a co-ordinate transformation &« ' at the point such that Fisr
= ¥ (Ry,;+Ryyy), provided that det(g;) # 0.

Proof. We shall assume that we have already performed a trans-
formation to co-ordinates «* at p, such that g;;, = 0 at p, in this system;
this is always possible as in Theorem 5.

Let us consider transformations for which, at p,, A} = 67 and Ay = 0.
The transformation laws (13) and (14), in view of the fact that we as-
sumed g;;;, = 0, reduce 0 §;; = gy, §ijr = 0, and §y 0 = Afage; +Afadait+
+ g;j,.a- Further, suppose that at p,

A5a0y = .!-.(gkz,if + Ga e+ G ) — ¥ 9.0+ G+ Giin) 5

this expressions contains the correct symmetries, and the set of equations
always possesses a solution since det(g;) # 0. Substitution into (15)
yields '

Jijor = Afafei +A5a96i+ 9ijt
= 1(2u1.5; + 205500 — itk — Fik.1— Gitie— Fiteit) s

or gi)'.kl = %(R'ley_l—R_v,.kl)) in-VieW Of I;!:k =0, But ‘Ei]'kl = Loy at Po, a:nd
we have §; . = }(R,y,;+R;y) as required.

THEOREM 7. Any function L(R;;;+R;.;) may be written in the form

L*(R,;) for some fumction L*, and, conversely, a function M (R,;) may
be written M* (R +R;,) for some M*.

Proof. The first assertion merely states the obvious fact that
a function of R;,;+ R;; may be considered as a function of R;,.
The converse follows immediately from the identity

Rijkl = - &{(Riklj +Rilki) + (Rijlk +Rilik) + (Rﬁkl—l_Rjkil)}

which implies that any function of the form M (R,,,) is also a function
of the form M‘ ('Riklj +de7).
Consider now a relative tensor concomitant T__"T(g.; gk Gisi1)3

Theorems 5 and 6 imply that we can always transform to a co-ordinate
system at p, in which g;, =0 and g, = }(Ry;+R,y) via a trans-
formation having 4} = 6} at p,. Thus, in view of Theorem 7,
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TZ220555 ks Giira) = T-2249455 05 3(Biggy +Bigg)}
= T*22Z2 (945 Rij)
for some functions T*Z-_.
This concludes the proof of Result 4, that is,
THEOREM 8. Any relative tensor concomitani of the form Tt :r(gy;
Gii k3 9y0) May be expressed in the form T*71 r (g, nkl)
THEOREM 9. Any relative tensor concomitant Tl 7o (X5 X ;5 gi,, Giik)y

where X, is a vector field and X,; = 0X,;/047, i3 of the form ™™ g’ (X33
X5 9i), X,; being the covariant derwatwe of X, relative to the symmetric

metric tensor g;; having det(g;) # 0.

At a specific point p, in V*, the transformation 2° < # for which
Aflp, = 6f and A%, = —Igl, (as in Theorem 5) implies X; = X;,
X, =X,,—I'$X, = X,;, and §;; = 0. Thus

T-Z2(X5 Xy 9555 9as) = T-22( X5 Xy 9443 0)
= T*-“-—(Xu X‘m) gu)

as required.

THEOREM 10. Any relative tensor Tl wor(X;5 X, ;5 9i5 Gk Gigaa) 98
of the form Tr e (X5 X5 945 Biga)y 'where X and g;; are as in Theorem 9
and Ry, 18 the Riemann curvature tensor relative to Gii -

Consider a transformation such that at p, in V", AY = 67, A, =0
and

Aj9ei = %(gkl.i;i’{' Jirie T Gix,i) — 3 (Gsat Ginan + Ginan) s
for such a transformation,
Fiir = ¥ (Bya; +Bugy) + Mijra,s

where M, is a quadratic in the Christoffel symbols I',. Also, 7. = ijs
gzi—g'lj’jzj'—x‘w’ Eblld.X X at Po
Thus we have

TZZ2(X5 Xogs G G Gisr)
=T___ (Xi; Xi,i; 9355 Qi5, k5 %(Riktj+Ruki)+Mﬁkl)-
(This differs from the transformation of Theorem 6 only in that I, are
not assumed zero here; hence the presence of M,;,;.) Since g, , may be

written in terms of g;; and I, there exist functions 7*--- such that
the above may then be written

T-22( X5 Xogs 0555 ks i) = TT227 (X5 X5 9455 Ty (Rugy+ Ragg)) -

Consider now a transformation such that Af = 6 and Af = —IY
at p,, and A%, are arbitrary. For such a transformation, X,; = X;; and
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gy = 0; our equation thus reduces to
T-27(Xy5 Xy 5 95 Goies Gin) = TT222(Xas Xiss 95 Ties R+ Ries)
= T*"222(X;5 X5 953 05 Ruy+Ruy) -

Thus in view of Theorem 7, there exist functions T**~-_ such that
T-Z2(Xi5 X, 35 955 G Go) = T 2Z2( X5 Xiys 945 Bugm)

as required.
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