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On a non-linear convolution equation
occurring in the theory of water percolation

by W. OKRASINSKI (Wroclaw)

Abstract, We study the one-dimensional non-linear equation
i u® =HKsu+L (a>1),

where K and L vanish on the half-line (— oo, 0), K is a non-decreasing function having
a jump at the origin and L (x)/@Y(a—) is a non-decreasing convex function.

We give some theorems concerning the existence and uniqueness of solutions
% such that u(z) = 0 for < 0 and u(x) > 0 for 2> 0.

For a = 2 we show a dependence of solutions of our equation on the function L.

Suppose we are considering water percolation from a ecylindrical
reservoir into the surrounding unsaturated region. Describing this pheno-
mena in the Boussinesq model (see [1]) we are led to the one-dimensional
non-linear integral equation (see [2]), which ean be brought to the form

(1) u?* = K+xu+ 1L,
or
(1) u: = Kx*»u,

if we seek only approximative solutions of the problem. Here K, L are
known smooth functions depending on physical parameters. The unknown
funetion # describes the water table in a suitably introduced coordinate
_system. This is the reason why, from the physical point of view, non-
negative solutions of (1) or (1’) vanishing identically in the interval
( — o0, 0] are most interesting. Equation (1) may be considered indepen-
dently of its physical meaning. One may ask for its properties in the case
when K, L are arbitrary locally summable functions or, more generally,
distributions such that the convolution on the right-hand side is well
defined. Paper [5] was an initial step in this direction. Now we are going
to consider the more general equation

(2) u = Ksu+L, where a> 1.
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1. Properties of non-negative solutions. We study equation (2) on
the whole real line E. We suppose that the function K satisfies the fol-
lowing conditions:

(i) K is a non-decreasing function on R,
(ii) K(z) =0 for 2 < 0,
(iii) the limit 1im+ K (x) = g is a positive number (see {5]).
z—0

Moreover, we suppose that

(iv) L(z) =0 for 2 < 0,

(v) 8(z) = L(=x)/z"“V is a non-decreasing convex function for z > 0,

(vi) lim S(z) =0.

z—0t

We denote by M, the set of all measurable functions f on R such that
f(z) =0 for <0 and f(z) > 0 for z > 0. By @, we denote the subset
of all continuous functions » e M,.

THEOREM 1. If w € M, is a solution of (2), then u is a non-decreasing
function belonging to the set Q,.

Proof. Since K*u (see [5]) and, by condition (v), also L are non-
decreasing functions, then %” is a non-decreasing function. Hence % is
a non-decreasing function.

By conditions (iv), (v), (vi) L is a continuous function on E. Since
K xu is continuous (see [b]), it follows that » is a continuous funetion.

THEOREM 2. If w €Q, 18 a solution of (2), then

-1 1/(a—1) 1/(a—1) 1/(a—1)
3) [aa gw] <u(e) < [fK(r dr + (a_“l)g] S(a:)]

for 2> 0.

Proof. The first inequality of (3) can be obtained just as in {5].
We have, by Theorem 1,

u(z) < u(m)[fK(t)dr+ t ;] for > 0.

Then, by the first inequality of (3), we get

z a 1/(a—1)
() <u(w)[fK(r)dr+[(a_1)g] S(w)],

from which we obtain

o z a 1/(a—1)
u ‘(m)<!1€(z)dt+[m] S(z).

Hence we get the second inequality of (3).
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2. Existence and uniqueness of non-negative solutions. For a func-
tion f € @, we denote by T (f) the funetion

(4) T(f) = (E+f+ L)'=

Let P be the set of all functions belonging to the set @, and satisfying
inequality (3).

LeMMA 1. The operator T transforms P into P.

Proof. Let
0 for <0,
b ya = _ 1/(a—1)
(5) () [a lgw] for 05 0.
a
0 for x <0,
6 G(x) = p 1(a—1) 1j(a—1)
“ “ [ [K(T)d‘t—l-[—a—] S(z) for z > 0.
5 (a—1)g

Using conditions (i)—(vi) we get
TF)(z)=>F(x) and T(G)(x)<G(x)

for all z € R, from which, just as it was done in Lemma 4 in [5], we obtain
the proof.

It follows from property (iii) that for every b > 0 there exists ¢ > 0
such that ¢ < b and K (¢)/g < a.

Let P® be the set of all functions from @, restricted to ( —oo, b] and
satisfying inequality (3) on (0, b].

For any f,,f, e P® we can define

(M) es(fu fo) = sup 1D a0

o<izb  6r(z) ]

where

g oL gup KO0

Je<t<b T and  r(z) = G(z) —F(x).

LEMMA 2. The function g, is a metric in P® and P® is a complete metric
space.

This lemma can be proved like Lemma 5 in [5].

LEMMA 3. For every 2> 0

z

- -or(x) = fr(r)dr.

0

(8)
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Proof. It follows from conditions (iv)—(vi) that
8(z) = [ W(z)dr,
0

where W is a non-negative non-decreasing function (see [6]). Heace,
: by (6), we obtain

G(z) = fZ(r)dr,

where Z is a non-negative non-decreasing function.
Let

z

or (@) —fr(t)dt.

0

a—1

Then

1 x
V(@) = — [G(w)]2‘°[wZ(m)— f Z(t)dt]
a
0
for almost all # > 0. From the inequality

z
[Z(mar<Z(@)z for x>0
0

we get
V(z)>0 for almost all 2> 0.

We have [(2) > 0 for z > 0, because ! is absolutely continuous (see [4]).
This implies inequality (8).

LEMMA 4. For f,,f, e P

K(e)

(9) Qb(T(fS)7'T(fl)) <—ag_9a(f2!f1)-

Proof. We get, by the Lagrange theorem,

T(f) (@) = T(f) (@) < = ——— A *fa =) (@) for &> 0,

a [min(T(f,)(2), T(f)(@)]"""

from which, by Lemma 1, we obtain

1
IT(fo) (@) —T(f,)(2)] < mK*[fz—fl | ().

From the last inequality we get

ol

1T ) T () o) < T [ K=& r@iras, .
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This inequality can be written as

P

IT(fa) () ~ (@) < -y f E@e*r(e—1)dre,(fi, 1)

(see [6]). Since for @ € [0, b] we have
(10) K(z)e ?* < K(e)
(see Lemma 7 in [5]), we obtain

§l

T (f2) (@) =T (f2) (@) < r()de gy (far fo) - -

(a—1)gx J
_Applying inequality (8) we can write

K
T (@) ~T () 0] < = > (@) e o)

The lemma is proved.

THEOREM 3. Equation (2) has a umique solution in the set M; this
solution belongs to Q,.

Proof. The operator T is, by Lemma 4, a contraction on the complete
metric space PP, Using the Banach contraction theorem (see [3]) we infer
that T has a unique fixed point in P? for every b > 0. This implies that 7'
has a unique fixed point in P.

3. Some estimates. For applications it is often useful to investigate
solutions of the homogeneous equation

(11) u® = Kxu.

Now we give an estimation for the solution of this equation.
LEMMA 5. If &e M, is the solution of (11), then

a—1 ~ 1/(a—1)
(12) w(@) < [—l—fK(r)d’t] for > 0.
¢ 0

This lemma can be proved like Theorem 5 in [5].
Let a = 2. We assume conditions (iv)—(vi) for functions L; (j = 1, 2).
Let u; be the solution of the equation

(13) w? =Kxu+L;, (j=1,2).
We have, by Theorem 2,

192 < u;(2) < [ |K(2)+max (Wy(z), Wa(n))|dr  (j =1,2),
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where W, W, are non-decreasing non-negative functions and
8jw) = [Wir)dr (j=1,2)
1]

(see [6]). We can show the following dependence of solutions of (13) on
the funection L.

LeMmA 6, For b> 0
(14) [1__£ sup |4 (T) — uy(7)] <_}_ su | Ly (z) — Ly (7)]

=

g 1o<i<hd epth(‘t) g o<e<d eﬁr‘th(‘t) !

where h(x) = f[K(r)—§g+ma,x(W1(r), W,(1))] dr.

Proof. For # € (0, 5], by Lemma 1, we have

() —ua(0)f < — [ Elo =0 ta(5) —watodr-+ (o) — L]
Hence we get

— 1 F
(@) —ux(a)| < sup. i ('j;(”' ga | Fle b

1
+— |Li(%) — Ly ()]
gz
Applying (10) we obtain

[uy(7) —us(z)| K(c) ,, 1
1 (@) —uy () <SP ‘eﬂ,h (t; 2 o h(@)+— Ls(@) — La(a)].
Since a = 2, the number

[Ly (7) — Lp(7)]

su is finite.
vorts P 7h(7)
We can write
[y (7) —ue(7)] K(c) |uy (7) —ue(7)] 1 | Ly (7) — Lo (7)]
sup 52 < 5 +— e ’
0<v<b, € h(T) 29 o<e<pb € h(‘f) g o<zt e Th(f)

from which we get (14).
COROLLARY. From (14) we obtain

(16)  sup |u,(z) —us(7)|

0<t<b

9g6b
<2 U [K (v) — ;-g]dr+bB] sup —a(m) =L@l
2g K(G) o<r<b ﬁ‘r f [K(s)—ig]ds

where B = maxi(W,(b), W(d)). -
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