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Abstract. In this paper, we define a homotopy invariant for S'-equivariant maps ¢: (U, 8U)
—(V, V\{0}), where V is a representation of S* and U = V@R is open and bounded. We call this
invariant the S*-degree. An infinite-dimensional generalization of the S*-degree is also given. As an
application we give a description of the Fuller index in terms of the S'-dcgree.

Introduction. In 1965 F. B. Fuller introduced an invariant of a flow, called
now the Fuller index. Roughly speaking, the Fuller index counts the algebraic
number of periodic orbits of flow. It is natural to ask whether the Fuller index
can be defined as a homotopy invariant of a map defined by the flow on
a function space. This led to a construction of a new homotopy invariant for
S'-equivariant maps. We call this invariant the S'-degree despite the fact that it
is defined for maps with domain in the(n + 1)-dimensional euclidean space and
range in the n-dimensional euclidean space.

In this paper, we first construct the S'-degree in the finite-dimensional
case. More precisely, we assume that there is given a patr (V, g), where V is
a finite-dimensional linear space over R and g: S*'— GL(¥) is a continuous
homomorphism into the group of all linear automorphisms of V. We consider
continuous maps f: X — V such that X is an invariant subset of V@R (i.e.
(x, e X, geS* imply (e(g)'x, ))eX) and f is equivariant (ie. f(o(g)'x, 4)
=0(g)f(x, ) for all geS', (x,A)eX). Suppose @< V@R is bounded,
invariant, Q< X and ‘f(x,4)#0 for (x,4)edQ; then we define
Deg(f, Q) = {a,}, where re{0}UN, a,eZ,, o,eZ, o, =0 for almost all r;
Z denotes the group of integers and Z, = Z/2Z.

In order to give at least a very rough idea of our approach we will sketch
the definition of Deg(f, Q) for f satisfying additional assumptions A.1-A.3
below. In some sense, equivariant maps f satisfying these assumptions are
“generic” for our construction. First we assume

A.1. There exists aeQ such that f~'(0) = {o(9)a: geS*}.

Recall that the subgroup of S! defined by G, = {geS': o0(g)-a =a} is
called the isotropy group of a. Since g is continuous, G, is either finite or S*.
Our second assumption is
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A2. G, is finite.

Note that since G, is a finite subgroup of S! there exists ke N such that
G,= Z,, the subgroup of S! consisting of k-th roots of 1. Without loss of
generality we 'may assume that (V, @) is orthogonal, i.e. all g(g) are orthogonal
with respect to a scalar productin V' Let W = {xeV: g(g)'x = x for geG,}.
Take the direct sum decomposition V = W@ W+, Writing points of V@R
=W@®W®R in the form (x, y, A), we have

f()C, y’ A) = (fl(xi y’ ’t)’ fz(X, y: A))EWEB W'L-
Our last additional assumption is

A3 f,(x,y, )=y for all (x,y, HeQ.

Now assume that D?, p = the dimension of W, is a sufficiently small
closed disc contained in @ (W @ R) and transversal to the orbit Ga = M at a.
Orienting DP? in a suitable way we identify it with the standard unit disc in W.
Then, using the classical Brouwer degree we define an integer deg(p, DP),
where ¢ denotes the restriction of f. Finally, we let Deg(f, @) = {«,}, where
o, = deg(p, DP) and a, =0 for r # k.

In Section 1 we introduce notations, recall basic facts concerning
finite-dimensional representations of S! and formulate the main theorem
(Theorem 1.2) which lists the most important properties of our degree. Sections
2 and 3 are devoted to the proof of Theorem 1.2. First, we construct our degree
under the assumption that the set Q consists of points with the same isotropy
group (Section 2). For maps of an arbitrary Q, we define the S!-degree in
Section 3. In Section 4 we discuss the case of differentiable equivariant maps;
assuming that 0 is a regular value of f we derive formulas for the S'-degree. In
Sections 5 and 6, following the classical Leray-Schauder theory, we consider an
infinite-dimensional generalization of our degree. In Sections 7 and 8 we
discuss the relationship between our degree and the Fuller index.

The idea of defining a (generalized) degree for S'-equivariant maps is not
new. In [6] Dancer constructs such a degree for S'-equivariant gradient maps.
The relationship between these two degrees will be discussed in a separate
paper [10] by Dylawerski. Another version of §'-equivariant degree is defined
in Ize-Massabo-Vignoli [14] (the authors use cohomological obstruction
theory).

It should also be noted that the methods used in the paper closely relate it
to the work of Rubinsztein [19] and tom Dieck [7].

1. Degree for S'-equivariant maps. For r > 0 we let
D'(r)={xeR" |x| <r}, S"'(r)={xeR" |x|=r],
r'(r) = {xeR™ |x| <r}.
We also let
D'=D(l), SU=8"Y1), B =Bl
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For meN, we let Z,, = Z/mZ, we often use the identification
Zm = {gESI: g= eias 0= 21tj/m, J = On 1’ (RRT) m-l}-

We begin by recalling some terminology and facts concerning group
actions and group representations. Let G denote a compact Lie group and let
eeG be its neutral element.

We say that G acts on a topological space X (or X is a G-space) if there is
a continuous map u: G x X — X such that

@) nle, x) = x,

(i) u(g1s (g5, X)) = (g, 42, %),
for all g,, 9, € G and xe€ X. In what follows, for simplicity of notation, we write
gx = u(g, x). For a given x € X the subgroup G, = {ge G, gx = x} is called the
isotropy group of x and the set Gx = {gx, ge G} is called the orbit of x. Two
points x, ye X are of the same orbit type if there exists ge G such that
G.=9'G,g.

Given a subgroup H < G we let

X% ={xeX: hx=x for all heH} ={xeX: H<=G,},
Xy={xeX: G,=H}.

Let X, Y be two G-spaces. We say that a map f: X — Y is G-equivariant if
flgx)=gf(x) for all xe X, ge G. We say that fis a G-map if it is equivariant
and continuous. We say that a continuous map h: Xx[0,1]-Y is
a G-homotopy between two G-maps f,, f;: XY if h(x, 0) = fy(x),
h(x, 1} = f,(x) and h(gx, t) = gh(x, t) for all ge G, xe€ X, te[0, 1]. The set of
all G-maps from X into Y will be denoted by Map;(X, Y). We also let
[X, Y]; denote the set of all G-homotopy classes of G-maps from X into Y.

A representation of G is a pair V =(V,, g), where ¥, is a finite-
dimensional, real linear space and go: G —» GL(V}) is a continuous homomor-
phism from G into the group of all linear automorphisms of V. Note that if
V =(V,, @) is a representation of G, then letting gv = ¢(g)(v) we obtain
a G-action of G. Moreover, g(av+ fiw) = a(gv)+ f(gw) for all ge G, v, we V¥,
and a, feR, i.e. the action is linear. It is evident that any linear G-action on ¥,
defines a representation. We often do not distinguish between V and V, using
the same letter for a representation and the underlying linear space. Two
representations ¥V and W of G are equivalent if there exists an equivariant
linear isomorphism T: V — W. Given two representations ¥ and W of G we
denote by V @ W the direct sum of V and W, i.e. the direct sum of linear spaces
with the linear group action defined by g(v, w) = (gv, gw).

Throughout the rest of the paper we assume G = S§' = {zeC: |z| = 1}.

For meN define ¢g™: S'>GL(2, R) by

ity cosml —sinm0 0<0<?
"€ [sian cosml |’ SOson
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For k, me N we denote by R[k, m] the direct sum of k copies of (R?, g™); we
also denote by R[k, 0] the trivial k-dimensional representation of S'. The
following classical result gives a complete classification up to equivalence of
finite-dimensional representations of S* (Adams [1]).

1.1. THEOREM. If 'V is a representation of S* then there exist finite sequences
{ki}, {m:} satisfying
(%) me{0}uN, KkeN, 1<i<r, m<..<m,

such that V is equivalent to @ R[k;, m;]. Moreover, the equivalence class of V is
uniquely determined by {m,}, {k,} satisfying ().

Suppose now that V is a representation of S'. Let 2 be an open bounded
invariant subset of ¥ @ R. Suppose further that f: €— V is a G-map such that
7(%) = v\{0}. Our construction, carried over in Sections 2 and 3, assigns to
each closed subgroup H = §' an element

VA if H is finite,

dcgﬂ(fv ‘Q)e{zz if H= Sl.

We denote by &/, the free abelian group generated by N and let & = Z,® o,,.
Note that ae &/ means « = {a,}, where ¢,€Z, and «,€Z forre N, and a, =0
for almost all . Using the fact that there is a one-to-one correspondence
between N and the family of all proper closed subgroups of S!, we define
Deg(f, Q) = {a,}e o by ety =degs:(f, Q) and «, =deg,(f, Q) if r = [H|.

We are now in a position to state our main result,

1.2. THEOREM. Let V run through representations of S, Q through the family
of all open bounded invariant subsets of VOR, and f: X -V through G-maps
such that X is invariant, Q < X and f(8Q) < V\{0}. Then there exists an
& -valued function Deg(f, Q) = {deg,(f, Q)}, called the S'-degree, satisfying
the following conditions:

(@) If degy(f, Q) #0 then f~1(0)NnQH # 2.

(b) If Qo< Q is open, invariant and [~'(0)nQ2 = Q, then Deg(f, Q)
= Deg(f ’ QO)’

(© If @,, Q, are open invariant subsets of Q such that Q,"Q, = and
70N Q = Q,uQ, then Deg(f, Q) = Deg(f, 2,)+Deg(f, 2,).

d) If h: (@x[0, 1], 02 %[0, 17)~(V, V\{0}) is a G-homotopy then
Deg(hq, Q) = Deg(h,, Q).

(e) Suppose W is another representation of G = §' and let U be an open
bounded invariant subset of W such that 0eU. Define F: UxQ—-=W@V by
F(x,y) =(x, f(y)). Then Deg(F, U x Q) = Deg(f, Q).

2. Proof of a special case of Theorem 1.2. First we recall basic properties of

the topological (Brouwer) degree in R” (cf. Amann-Weiss [2], Chow-Hale [4],
Dugundji-Granas [9]).
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Let U be an open bounded subset of R", If f: X — R" is a continuous map
such that U< X and f(8U) =« R"\{0} then there is defined an integer
deg(f, U), called the degree of f with respect to U. All the constructions and
results of Sections 2, 3 and 4 are based on the following properties of degree.

(I) (Existence of solutions). If deg(f, U) # O then there exists x, e U such
that f(x,) = 0.

(IT) (Excision). If U, is an open subset of R" such that U, < U and
7Y 0)nU =f~10)n U, then deg(f, U,) = deg(f, U).

(IIT) (Additivity). If U,, U, are open disjoint subsets of U such that
f710NU = U, U, then deg(f, U) = deg(f, U,)+deg(f, U,).

(IV) (Homotopy). If h: Ux[0, 1]>R" is a continuous map such that
h=1(0) = Ux [0, 1] then deg(h,y, U) = deg(h,, U), where h(x) = h(x, i) for
xeU,i=0,1.

(V) (Contraction). Let W=Ux(—1,1)cR"xR=R""' and define
F: WoR"t! by F(x, t) = (f(x), t). Then deg(F, W)= deg(f, U).

(VI) (Diffeomorphism invariance). Suppose U,:is an open subset of R" and
d: U,— R" is an orientation preserving diffeomorphism such that U < d(U,).
Then deg(fod, d~'(U)) = deg(f, U).

Note that (I)~(IV) are the well-known fundamental properties of degree
(see Amann—Weiss [2]). Properties (V) and (VI) are easy consequences of the
differential interpretation of degree (see Chow-Hale [4]).

For the rest of this section we fix an orthogonal representation V of
G = S'. We let n be the dimension of the real space V. If the action of G is not
involved we do not distinguish between V and R". For an invariant open
bounded subset Q = V@ R we denote by C4(Q) the linear normed space of all
G-maps f: 2 — V with the standard sup norm. If X is a closed invariant subset
of @ we let

Cs(@, X) = {feCa(D): f(X) = V\{0}}.

Clearly C4(€2, X) is an open subset of C(Q2). We say that f;, f; € C;(£2, X) are
G-homotopic in C4(Q, X) if there exists a G-homotopy h: @x [0, 1]— V such
that h(X x [0, 1]) =« V\{0} and hy, = fy, h, = f;.

In order to make our proofs more readable, we introduce some notational
conventions. Suppose W is a finite-dimensional linear space over R and
A: W W is a linear automorphism. Choose an orientation of W and let

4 +1 if A preserves orientation,
sgnAd = . . .
& —1 if A reverses orientation,

Note that sgn A does not depend on the choice of orientation of W.
If & W@®R— W is a linear map such that ®(W @ R) = W then Ker & is
a one-dimensional linear subspace of W@R. If veKer® and v # 0 choose
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a linear functional @: W@ R—-R such that ¢(v)=1. Define 4: WOR
+W@®R by A(x)=(P(x), ¢(x)). Evidently 4 is an automorphism. We let

sgn(P, v) =sgn4;

clearly this definition is correct, i.e. independent of the choice of ¢.
Suppose ac V@R and G,# S!. Then M = Ga is a one-dimensional

submanifold of V@R. Set v =n'(0), where n(t) =g(t)-a, g(t) = exp(2mnit).

Thus v is tangent to M at a and determines an orientation of M. Let

N ={xeV@®R: {x,v)=0};

we call N the normal space at a. Note that ae N. We say that a map 4: N—=V
is a normal map at a if it is a linear isomorphism and sgn(®,, v) = 1, where
®,= AoP, and P, denotes the orthogonal projection of V@R onto N.

The following proposition is an immediate consequence of the Slice
Theorem (see Bredon [3]).

2.1. PrOPOSITION. Let By(a, &)= {xeN: |x—a|<e¢} and let U=
GBy(a, €). There exists &, such that if ¢ < ¢, then U is a tube about Ga and
By(a, €) is a slice for U, and consequently satisfies the following condition:

(*) X=9,y1=91Y:, X€U, y;,y,€Bya,8), ¢;,9,€GC
imply g,(92)” ' €G,.

2.2. DErFINITION. Let ae V@ R and G, # G. We say that a continuous map
@: B"(2)—>V®R is a slice map at a if

(a) ¢(0) =a,

(b) there exists ¢ > 0 such that By(a, &) is a slice and ((B"(2)) = By(a, ),

(c) there exists a normal map at g, 4: N=V, such that
e(x)=a+ A" (x).

Denote by H = {H,, ..., H_} the family of all closed subgroups of S' such
that Vy # @ and let K = H,n...nH_, k = |K|, ie. K is the smallest isotropy
group of V. First we assume K # S' and postpone the case K = S! to the end
of this section.

2.3. AssUMPTION. Throughout the rest of this section we assume that
Qc V®R is an invariant open bounded set and (Q), = Q.

Let C(D") be the linear normed space of all continuous maps f: D"—R"
with the sup norm and let

C(D", Y= {feC(DY): f(S" ') = R"\{0}}.
We will later need the following lemma.
2.4. LemMA. C(D", 8"~ ') is an open dense subset of C(D").

Proof Cleatly C(D", §"~ ) is open in C(D"). To prove it is dense, choose
fS€C(D") and & > 0. It is well known that the set of C'-mappings is dense in
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C(D"). Hence there exists f, e C(D") such that ||f —f,|l < ¢ and f, extends to
a Cl-map F: U—R", where U is an open subset containing D". Using Sard’s
theorem choose a regular value y,eR" of F such that |y,| < ¢ and define
F,: U-R" by F,(x) = F(x)—y,. Choose ry > 1 such that D"(r,) = U. Since
0 is a regular value of F,, there exists r, 1<r<r,, such that
|F,(rx)—F,(x)l <& for all xeD" and F{'(0)nS""!(r) = @. Define f,; by
fi(x) = f,(rx). Then f7*(0)nS""* =@, ||f;—f|l < 3 and the conclugion fol-
lows.

We frequently use the following simple observation.

25. LEMMA. Suppose foeCy(@Q, X) and let e=inf{|fy(x)|: xeX}. If
feCs(Q) and ||f —foll <€ then feCy(Q, X) and [ is G-homotopic to f, in
Cs(2, X).

Proof. Clearly feCq(Q, X). The formula h(x, 1) = (1—1) fy(x)+tf (x)
defines the required homotopy.

2.6. LEMMA. Let ¢: B"(2)—> Q be a slice map. If F e C(D") then there exists
feCs(Q) such that || f]| = ||F|l and F(x) = f(p(x)) for all xeD"

Proof. Extend F to a continuous map F: B"(2)— R" such that F,(x) =0
outside a compact subset of B"(2) and sup{|F,(x)|: xeB"(2)} = ||F]|.

Since ¢ is a slice map there exists By(a, €) such that ¢(B"(2)) < By(a, &).
Set U = Go(B"(2)). If xe U then there exists ge G = S such that gxe By(a, &),
and we let f(x) =g~ F (¢ 1(gx)); if xe Q\U we let f(x) =0. In view of 2.1
and 2.2 it is easy to see that f is the required map.

2.7. DErINITION. We say that an open invariant subset ;, < Q is elemen-
tary if there exists a finite family {Q,, ..., Q,} of open invariant subsets of
Q such that

(*) Q= Qu...uQ,
(k%) QnQ, =@ for i#],

(#+x) for each i, 1 < i< r, there is a slice map ¢;: B"(2)— Q such that
Q, = Go,(B").

We call feC4(Q, 0Q2) an elementary G-map if there exists an elementary
subset 2, = Q such that £ ~1(0) = Q,. Similarly we say that a G-equivariant
homotopy h: (2, 3Q)—(V, V\{0}) is elementary if there exists an elementary
subset Q, = Q such that h~'(0) = Q, % [0, 1].

2.8. LEMMA. If [, € C4(Q, 09Q) is an elementary G-map then there exists & > 0
such that f e C;(Q, 0Q) and || fo—f|| < € imply that f is elementary and h defined
by h(x, 1) = (1—1t) fy(x)+1t f(x) is an elementary G-homotopy between fo and f.

Proof. Let 2, be an elementary subset of Q such that f51(0) = Q, and let
¢ = inf{|fo(x)]: xe Q\Q,}. It is evident that ¢ has the required property.
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Assume now that fe C45(f2, 8Q) is an elementary G-map and {Q}, {¢;}
satisfy the conditions of Definition 2.7. Let U, = ¢; }(@?) and F,= foe;:
U;,-R". Clearly F; '(0) is a compact subset of U; and thus deg(F,, U)) is well
defined for i =1,..., r. Define

degy(f, Q) = deg(F,, Uy)+  +deg(F,, U,).

From propertles (I-(VI) of the classical topological degree it follows at once
that the definition of deg,(f, Q) is independent of the choice of {€;} and {¢,}.
The following observation is a direct consequence of our definition of

degy(f, Q).

29. Remark. If h,: (2, 0Q)—(V, V\{0}) is an elementary G-homotopy
then degg(h,, Q) = degg(h,, Q).

2.10. LEMMA. Let ¢: B"(2)— Q2 be a slice map and let Q, = Gp(B"). Then
Cs(Q, 8QuUQ,) is a dense subset od Cg4(Q, 002).

Proof. Suppose f € C4(@2, Q) and choose 0 < & < inf{|f(x)|: x€dQ}. Let
F denote the map defined by F(x) = f(¢(x)); clearly FeC(D"). By 2.4 there
exists F, e C(D", §"~') such that ||F—F,|| <& in C(D"). By 2.6 there exists
foeCs(Q) such that ||f,ll <& and fy(¢(x)) = F(x)—F,(x) for all xeD" Let
£ = f()—fo(®). Since [f—/ill = lIfoll <&, fi e Co(@, 32). Moreover,
filp(x)) =F,(x) for all xeD"; hence f,eC4(R2, 3QUOQ,). Therefore
Cs(@, 0Q0UQ,) is dense in Cyx(@, 6Q) and the proof is complete.

To define our degree in the general case we need the following two results.

2.11. PROPOSITION. The set of all elementary G-maps is an open and dense
subset of Cgz(Q, Q).

Proof. From 2.8 it follows at once that the set of all elementary G-maps
is an open subset of C;(£2, 8Q). To prove it is dense assume f, € C;(Q, Q).
There exists a finite family of slice maps ¢,: B"2Q)—Q,i=1,...,r, such
that {G¢,(B")} covers fo'(0). Let U, = Gg,(B"). Take ¢ such that 0 <e¢
< inf{|fo(x)]: xe@\(U,u...uU,)}. Since an intersection of open and dense
subsets i open and dense, Lemma 2.10 implies that
Cs(@, 0QUaU, u...udU,) is an open and dense subset of C;(§2, 0€). There-
fore there exists feC4(R, 0QUAU, L...LAU,) such that ||f,—f] <& Let
Q,=U\U,v...uU;_,), 2, =U,. It is evident that the Q, are mutually
disjoint and f~'(0) = 2,uU...uQ,. Thus the proof is complete.

2.12. PROPOSITION. Suppose f,, f, € C;(82, 8Q) are two elementary G-maps
which are G-homotopic in Cg4(Q, 8Q). Then degy(fy, Q) = degy(f;, Q).

The proof of 2.12 will be based on the [ollowing technical lemma.

2.13. LemMma. Suppose h: (Qx[0, 1], Q% [0, 1])-(¥, V\{0}) is a
G-homotopy and {U;}, 1 <i<r,is a finite family of open invariant subsets of
Q such that
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(*) "0 = (U,u...uU)x[0, 1],
(*x) there exist slice maps ¢;: B"(2)—Q, such that U, < Go,(B") for
i= 1, e b
(v#%) hy, h,eCe(Q, 0QUAU,U...UdU,) are elementary.

Then degg(hg, Q) = degg(h,, Q).

Proof. The proof is by induction on r. Property (IV) of the classical
degree implies that the lemma is true for r = 1. Suppose now it is true for
r—1 and let X = II(h™*(0)), where IT: @x [0, 1] Q denotes the projection.
Clearly X is a compact subset of U,u...vU,. Let U=U,u...uU,,
Q,=U,\Uand Q, = U\U,. Let 8: @—[0, 1] be a continuous function such
that

(i) O(gx) = 6(x) for all xe@, geG,

(ii) 8(x) =1 for xe X nQ,,

(iii) 8(x) =0 for xe Q\U,.
For (x,)e@x[0,1] set KY(x,1)=h(x, B(x):t), hP(x, t) = h(x, O()
+t(1—0(x))) and f(x) = KV (x, 1) = h'¥(x, 0). From the definition of # it
follows that f is elementary and feCgy(@, 0QuaQ,u8Q,). Since A deter-
mines an elementary G-homotopy between h, and fin C¢4(@2, @\(U,u®Q,)) and
U,nQ, =, Remark 2.9 implies degy(hy, U,) = degg(f, U,).

Moreover, hY)(x, t) = f{x) = hy(x) for all (x, t)ef2, x [0, 1]. Thus

degg(hg, Q) = degg(hy, U,)+degg(hy, 2,)

= dch(fa U1)+dch(f, Ql) = dch(f’ Q)

Since h® determines a G-homotopy between f'and h, in C4(Q, 2\(Q,u U)) the
inductive hypothesis implies degy(f, U) = degg(h,, U), hence

degy(f, Q) = degy(f, Q) +degy(f, U)
= degy(h,, 2,)+degg(hy, U) = degg(h,, 2).
Therefore degg(h,, 2) = degg(h,, 2) and theé proof of 2.13 is complete.

Proof of Proposition 2.12. Suppose h is a G-homotopy between two
elementary G-maps f,, f; € C4(@, 8Q). Let X = IT(h™*(0)), where IT denotes
the projection of € x [0, 1] onto Q. Clearly X is a compact subset of €. There
exists a family of slice maps ¢, B"(2)—Q, i=1, ..., r, such that {G¢,(B")}
covers X. Let U, = Go,(B"). By 210, C4(2, 0QudU,u...udU,) is open and
dense in C4(82, 0Q). By 2.8 there exist Fo, F,€C4(@Q, 02U0U, u...udU,)
such that

(1=1) fy+tFq, (L—t)f,+tF, €Ce(@, A\(U,u...0U,)

and are elementary for all te[0, 1]. Let
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3 fox)+(1—=38) Fy(x) for 0gst<i,
H(x, t)=< h(x, 3t—1) for i<t <%,
(3-3) f;(x)+(3t—2) Fi(x) for$<t<1.

Since H  satisfies the assumptions of 213 we have
degy(Fo, Q) = degy(F,, 2). On the other hand, by 29, degy(f;, Q)
=degy(Fy, Q) and degy(f;, Q) = degy(F,, Q). Therefore degg(f,, ©2)
= degg(f;, ) and the proof is complete.

Now, our goal is to extend the definition of degg(f, ) from elementary
G-maps to all feC,;(Q,0Q). To begin with, let feC4(@, 0Q) and
e=inf{|f(x)]: xedQ}. By 211 there exists an elementary G-map
Jo€Cy(@, 8Q) such that ||f—f,|l <e. We define

degy(f, Q) = degk(fy, ).

To see that our definition is independent of the choice of f;, choose another
elementary G-map f, such that || f—f,|| < e. Then, by 2.5, both f, and f; are
homotopic to fin C4(R2, 8Q). Therefore f, and f, are two elementary G-maps
which are homotopic in Cg4(Q2, 6Q) and by 2.12, degy(f,, R2) = degx(f;, Q).
From the definition of degy(f, ?) and Properties (I)-(VI) of the classical
degree we obtain the following result.

2.14, THEOREM. Suppose that V is a representation of S'. Let K denote the
smallest isotropy group of V and assume K 5 S*. Let Q run through the family of
all open bounded invariant subsets of V@R such that Q, =Q, and [: X -V
through G-maps such that X is invariant, @ = X and f(0Q) = V\{0}. Then there
exists a Z-valued function degy(f, Q) satisfying the following conditions:

(@) If degy(f, Q) # O then there exists xeQ such that f(x) =0.

(b) If Q, = Q is open, invariant and f~'(0)nQ = Q, then degg(f, Q)
= dch(f, Q).

(c) If Q,, 2, are open invariant subsets of Q such that Q,NQ, =@ and
SHONQ € 2,00, then deg,y(f, Q) = dege(f, 2o)+degy(f, 2,).

@d) If h: (2x[0, 17, 02 x[0, 1])—(V, V\{0}) is a G-homotopy then
degK(hO' ‘Q) = degl((hla 'Q)

(e) Suppose W is another representation of S! such that K is the smallest
isotropy group of V@ W and let U be an open bounded invariant subset
of W such that 0eU. Define F: Ux Q- W@V by F(x, y) = (x, f(y)). Then
degy(F, U x Q) = degg(f, Q).

(f) Suppose fis of class C' on Q, 0 is a regular value of f and f ~'(0) = Ga.
Let v = n'(0), where n(t) = g(t)- a, y(t) = exp(2nit), be the tangent vector (o Ga
at a. Then degy(f, Q) = sgn(Df (a), v).

Finally, we briefly discuss the case K = S!. Thus we assume that the
smallest isotropy group equals G = S*, hence V is a trivial representation of S’
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Therefore we let V=R" and consider a continuous map f: (Q, Q)

—(R", R"\{0}), where  is an open bounded subset of R"*!, Let R" denote the
one-point compactification of R". It can easily be shown that there exists

7: R"*1—R" which extends f and J(R"*1\Q) = R"\{0}. Moreover, the homo-
topy class of f depends only on the homitopy class of f. Since R" is

homeomorphic to S* we may identify [R"*!, R"] with the (n+ 1)th homotopy
group of §”. Recall that the suspension homomorphism determines a homo-
morphism X: 7,,,(S")—Z,, and that X is an isomorphism for n > 3. Define
degq(f, @) = Z([fl) e Z,. The following theorem follows easily from the results
proved in Ge¢ba—Massab6—Vignoli [12].

2.15. THEOREM. Suppose that V, dimV = 1, is a trivial representation of
G = S*. Let Q run through the family of all open bounded invariant subsets of
V@R and f: XV through continuous maps such that Q< X and
£(89Q) = V\{0}. Then there exists a Z ,-valued function degg(f, Q) satisfying the
following conditions:

(@) If degg(f, ) # O then there exists xeQ such that f(x) = 0.

(b) If Q, = Q is open and f ~1(0)NQ <= Q, then degs(f, Q,) = degs(f, Q).

(¢ If @Q,,Q, are open subsets of Q such that ,nQ, =6 and
FTHO)NQ = Q,uQ, then degg(f, Q) = degg(f, Qo) +degs(f, Q).

(d) If h: (@x[0, 1], 6Qx[0, 1])—~(V, V\{0}) is a homotopy then
degG(h'O’ 'Q) = degG(hl’ Q)

(e) Suppose W is another trivial representation of S' and let U be an open
bounded subset of W such that 0eU. Define F: UxQ-W@V by

F(x, y) = (x,f(y). Then degy(F, Ux Q) = degg(f, Q).

3. Proof of the general case of Theorem 1.2. In this section, using the results
of the preceding section, we complete the proof of Theorem 1.2. In view of 1.1
we may assume that

(%) V =R[ko, 01@R[k(, m]@...@ R[k,, m,]

is a fixed representation of G = S, In what follows we identify the linear space
V with R", where n = ky+2k,+  +2k,. This determines an orientation of V.
Moreover, with respect to the standard scalar product in R", V is an orthogonal
representation of S* ({x, y> = {gx, gy) for all geS* and x, yeV).

Let H={H, ..., H} denote the family of all closed subgroups S! such
that V,, # @. If He H then V¥ (resp. (V @ R)¥) is a G-invariant linear space of
V (resp. V @ R). Note also that (V@®R)” = V¥®R for all HeH. Since V and
¥ @ R are orthogonal representations of §' we have direct sum decompositions
V=Vi®VH:, VOR=(VORI®WVH:. Let P*: VOR~(V¥)* denote
the orthogonal projection. Note that (V¥)! is a G-invariant subspace of V

In this section we still use all the notations of Sections 1 and 2.

Assume now that Q = V@R is G-invariant, open and bounded.
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3.1. DeriNiTION. We say that a map f € C(Q2, 8Q) is normal if there exists
1 >0 such that |P¥x| <# implies P¥x = P¥f(x) for all xeQ and HeH.
Similarly we say that a G-homotopy h: (@ x [0, 1], 82 x [0, 1])—(V, V\{0})
is normal if there exists n > 0 such that |P# x| < n implies P*h(x, t) = PHx for
all (x, )eQx[0,1] and HeH.

The following fact is an immediate consequence of Definition 3.1 and the
observation that Q is open in V¥,

3.2. COROLLARY. Suppose feCgy(2, dQ) is normal. For HeH let
fu: @y~ V¥ denote the restriction. Then f5*(0) is a compact subset of Qy.
Similarly, if h: (@x [0, 1], 2% [0, 1])=(V, V\{0}) is a normal homotopy and
hy: @y %[0, 11— V¥ denotes the restriction then hy*(0) is a compact subset of
0, %[0, 1].

3.3. PROPOSITION. Let Q be an open bounded G-invariant subset of V®R.

(*) For any feCg(Q, 0Q) there exists fy€ C5(Q, 8Q) such that f, is normal
and G-homotopic to f.

(»x) If f,, f1€Cs(Q2, 8Q) are two G-homotopic normal maps then there
exists a normal homotopy between f, and f,.

In' the proof of 3.3 we will use the following lemmas.

3.4. LemMa. For every e > 0 and He H there exists a G-equivariant map
r- VOR-V®R such that

(%) Ir(x)—x| <& for all xeV @R,

(vx) if xe V@R and |PE(x)| < & then r(x)e VF®R.

Proof. Define 8: V®R~-[0, 1] by

0 if |PH(x)| < e,
O(x) = < (PT(x)|—e)e™! if e < |PH(x)| < 2e,
1 if [PY(x)| > 2.

Define r by r(x) = x—PH(x)+ 0(x) P¥(x). It is easy to check that r has the
required properties.

35. LeMMA. For every é6>0 there exist >0 and a G-map
I'r VOR—-V @R such that

(*) [F(x)—x| <8 for all xe VDR,
(*x) if HeH, xe V@R and [P¥x| < n then I'(x)e VIQR.

Proof For HieH={H,,..., H} we set P,=P". Given 6 >0 sect
8, =27'5. From the preceding lemma it follows that for each i, 1 < i < k, there
exists r;: VOR—->V@®R such that |r(x)—x| <, for all xe V@R and
|P,(x)| < §; implies r;(x)e V*@R. Set I' =r,0...0r,. An easy computation
shows that I' has all the required properties.
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Proof of 3.3. First, to prove (x) suppose f: (2, dQ)—(V, V\{0}) is
a G-map. Choose ¢>0 such that [f(x)|>3e for all xedQ. Let
D={xeV®R: |x| <R} be a closed disc such that Q< {xeV®R:
|x| € R—¢}. By the Tietze-Gleason extension theorem (Bredon [3]) there exists
a G-map F: D—V which extends f. Since F is uniformly continuous,
there exists 0, 0<d<e, such that x,yeD and |x—y|<d imply
|[F(x)—F(y)| < ¢. Applying Lemma 3.5 we get I': VOR—~—+V@R and >0
which satisfy conditions (*) and (**) of that lemma. Since 6 <¢ and
|[F(x)—x| <&, we have I'(2) = D. Let Q: V@R — V denote the projection
map. For (x, )eQxI let

hix, t) = F((l—t)x+tI"(.x))+tQ(x—I"(x)).
If (x,t)edQx I then [x—I'(x)] < é <&, which implies
o(x—I'(x)|<e and |((1—t)x+tF(x )—x| = [t(F(x)—x)| < &
and so |F((1—t)x+tI'(x))—F(x)| < e. Thus for (x, )82 x [0, 1] we have
lh(x, )] = |h(x, ) ~f (x)+f (x)|
2 |f ) ~|[F(1—t)x+tI'(x)-F(x)|—|Q(x—T'(x))| >

Therefore h: (@x [0, 1], 6@ %[0, 17)-(V, V\{0}) is a G-homotopy. Let
Jo=hy.

If for some HeH and xeQ, |PH(x) <#, then I'(x)e VF@®R, hence
F(I'(x))e V¥ and thus P¥ f,(x) = P¥(F(I'(x))+x—I'(x)) = P#(x). Therefore f,
is normal and the proof of (%) is complete.

To prove (++) assume h: (@x[0, 1], Q% [0, 1)->(V, V\{0}) is
a G-homotopy such that f, = h, and f, = h, are normal. By the definition of
a normal map

(a) there exists 7, > 0 such that P#(f;(x)) = P¥(x) for all xeQ such that
PH(x)<n, and HeH and i =0, 1.

Choose ¢ > 0 such that |h(x, t)] = 3¢ for all (x, )e 02 x [0, 1]. Arguing as in
the proof of () we extend h to a G-map &: D x [0, 1]V and choose § > 0
such that |x — y| + |t —s| < J implies |$(x, t)—P(y, s)| < &. Applying Lemma 3.5
we obtain # > 0 and I' satisfying conditions (*) and (**) of that lemma.

For (x,t)eQx[0,1] set h*(x,t)= ®(Ix, )+Q(x—TIx), hOx, t)
= (1=1) fo(x)+th*(x, 0), K'V(x, t) = tf,(x)+(1 —t)h*(x, 1). Evidently

RO, p* B (@ %[0, 1], 82 x[0, 17— (V, V\{0})

are G-homotopies. Set n, = min{#,, n}. From the definition of 4* it follows at
once that h* is a normal G-homotopy. The definition of h®, ¥ and condition

(a) imply PHh®P(x, t) = PHx if |P’x| <7n,, xeQ, HeH, i =0, 1. Therefore
h©, bV are normal G-homotopies. The composition of the normal homotopies
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KO, p* K1) defines a normal homotopy between f;, and f,. The proof of 3.3 is
complete.

In view of 3.2 the following definition is correct.

3.6. DEFINITION. Suppose f € Cs(2, 02) is normal. For each He H choose
an open invariant subset Uy such that fz'(0) = Uy c Uy < Qy. Then
degy(fy, Uy) is well defined and independent of the choice of Uy,. Define

deg (f , U) for HEH’
degy(f, 9)={0 e for H¢H,

and Deg(f, Q) = {degx(f, D)}.

Consider now the general case and take feC4(Q, 6Q) not necessarily
normal. By Corollary 3.2 there exists f, € C4(Q, 6R2) normal and G-homo-
topic to f. Moreover, if f;€Cq(2, 8Q) is another normal map homotopic
to f then there exists a normal homotopy between f, and f;. Hence, by
2.14 and 2.15, Deg(f,, 2) = Deg(f;, ). Therefore the following definition is
correct.

3.7. DermrmioN. For feCy(82, Q) let Deg(f, Q) = Deg(fy, 2), where
foeCq(R2, 69) is normal and G-homotopic to f.

Proof of Theorem 1.2. To prove (a) suppose that f e C4(£2, 6Q) and
HeH are such that f(x) # 0 for all xeQ¥ Let e = inf{|f(x): xeQ¥}. The
arguments used in the proof of condition (*) of 3.3 show that there exists
a normal map f, which is homotopic in C4(@2, 0Q) to f'and | (x)—/,(x)| < & for
all xe Q. Thus f,(x) # 0 for all xe Q. Therefore degy,(f, Q) = degy,(f,, Q) =0
and the proof of (a) is complete.

(b), (c) and (e) are easy consequences of 2.14(b), 2.15(b), 2.14(c), 2.15(c),
2.14(e) and 2.15(e). Property (d) follows from Definition 3.6, 2.14(d), 2.15(d) and
condition (x*) of 3.3. Thus the proof of Theorem 1.2 is complete.

4. Computations of the S'-degree. In this section we prove some formulas
which express the S'-degree of equivariant map in terms of its derivative.

We keep the notations of the preceding sections. As before we assume that
Q2 is an open invariant bounded subset of ¥ @ R, where Vis an orthogonal
representation of G = S' of the form described by condition (+) given at the
beginning of Section 3. Suppose f€Cgq(Q, 4Q) and let f,: Q— V denote the
restriction of f. We assume further that fj is of class C* and 0 is a regular value
of fo. In this case f ~1(0) = M, U...uUM,, where each M, is diffecomorphic to S’
and M;nM; =@ for i # j. For each i choose an open invariant subset Q, = Q
such that M; < Q, and Q,nQ, = for i # j. Clearly Deg(/f, Q) = Deg(f, Q,)
+  +Deg(f, Q). Therefore throughout the rest of this section we assume
k=1, ie. we assume f ~*(0) = M is connected, hence diffeomorphic to S'. We
also let K denote the isotropy group of points in M. We discuss separately the
following two cases:
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Case . K#S§', K=2Z,,
Case 2. K =S".

Having in mind our applications of the equivariant degree to differential
equations, we first discuss Case 1. Choose ae M and let A = Df (a). Differen-
tiating, for ge K, the equality f(ga) = gf(a) we see that A: VOR-V is
a K-equivariant linear map. By the Schur Lemma, the direct sum decom-
positions

VOR=(VEORDIV*:, V=VEpWV¥*

give a decomposition of 4 of the form

L
[0 )

where A% VK@ R VK, AL (VB S (VF)L.

Since M = Ga is diffeomorphic to S!/K, it is an oriented 1-dimensional
submanifold of Q. Set v = 5'(0), where n(t) = g(t)a, g(t) = exp(2rit). Clearly
veVE@R. Let N* = {xe VX®R: {x, v) = 0},ie. N¥Xis the linear subspace of
VK@ R which is normal to M at a.

The following theorem describes the S*-degree of the map f in question.

4.1. THEOREM. Suppose [ € C4(Q, 3Q) satisfies all the assumptions of Case 1.
(i) If detA* > 0 then

AX, f H=K=Z_,

(i) If detA* < 0 then m =2y is even and

sgn(A%, v) fH=K=12,,
ngH(f, Q) = _Sgn(AK’ U) !f H= Z,p
0 ifH#Z,, 2,

In the proof of Theorem 4.1 we will need the following two facts. The first
is essentially a version of the Slice Theorem (see Bredon [3]).

4.2. PROPOSITION. Assume Q = GB, where B is an open sufficiently small disc
in the space N = {xe V@®R: {x, v) = 0} with center a. Then every K-equiva-
riant map @& Cy(B, dB) (every K-equivariant homotopy yeCg(Bx[0, 1],
8B x [0, 17)) determines a G-equivariant map f € C4(§2, 0Q) (G-equivariant homo-
topy he C4(2x [0, 1], dQ x [0, 1])) by

fl@gx)=g ox) (hig-x, t)=g-x(x, 1),
where xeB, geG = S?

4.3. LEMMA. Suppose that W is a representation of K = Z,, such that
WX = {0} and let Aut, W denote the group of all K-equivariant linear automor-
phisms of W.
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(*) If AecAuty(W) and detA >0 then A belongs to the connected
component of AutgyW containing the identity.

(xx) If AeAutyW and detA <O then there exist subrepresentations
W,, W, of Wsuch that W= W, @ W,, W, is one-dimensional and A belongs to the
connected component of J, where (with respect to the above decomposition)

=lo ")

The above lemma is a consequence of some standard facts in group
representation theory. For the sake of completeness we will sketch the proof of
it after proving Theorem 4.1.

Proof of Theorem 4.1. Notice that without loss of generality we may
assume that 2 = GB, where B denotes a sufficiently small disc in N with center
at a. Recall that A = Df(a) is a K-equivariant linear map and A;y: N—V is
a K-equivariant isomorphism. Hence the map ¢: B—V defined by
@(x) = A(x—a) belongs to Cr(B, dB). If the disc B is sufficiently small then the
linear homotopy x(x, t) = t fin(x)+(1—t)¢(x) is zero only for x = a. Applying
Lemma 4.3 to A'eAuty((V¥)') we obtain a continuous path #: [0, 1]
— Autg((V¥)*) such that n(0) = A* and 5(1) = 4,, where 4, is either I or J.
Define ¢* € Cg(B, 0B) by 9" (x) = A, (x—a), where, with respect to the direct
sum decompositions V@R = (VE@R)@ (V¥)* and V = V¥ (VK)*,

A 0
weloa)

Define f, € C4(€, 0Q) by f,(6x) = 0 * (x), where xe B, e G = S*. Proposition
4.2 implies that f; is homotopic in Cg(2, 0Q) to f. If det4* > 0 then the first
part of our theorem follows easily from 1.2(g).

If detA* <0 then by 4.3 there exists a direct sum decomposition
W= (V5t=WwW,®@W, such that W, is one-dimensional and A4, =J. Let
Qo =QNn(VEDR) and, for i=1,2, let U, denote the unit disc in W,
Without loss of generality we may assume @ = Q,x U, xU,. Let F: Q,x U,
—VE@® W, denote the restriction of f;. Writing points of (VX@®R)® W, in
the form x = (y, z), we have F(y, z) =(f,(y), —z). Let y: W, > W, be an
odd C'-function such that y(z) =z for |z|| <4, W(z)= —z for |lzl| > 3,
Y~ 10) = {—r,0, 7} and y'(—1) = Y'(1) = — 1. The formula y,(z) = (1 —t)y(2)
+1t(—x) gives a homotopy between —I: W, > W, and . Define F,: Q,x U,
VXD W, by Fi(y, z) = (f, (), ¥(2)). From the definition of F, and 4.2 it
follows at once that F, e C4(Q, x U,, 8(2, x U,)) and F, is homotopic to F in
Cs(Qo x U, 8(Q x U,)). Obviously (F,)~*(0) = MUM,, where M, = Gb and
b=1(a, 1)eQ,x U, has isotropy group Z,. Applying the first part of our
theorem to F, we obtain
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sgn(4X, v) fH=K=2,,
degy(F, Qo x U,) =< —sgn(d¥,v) if H=2Z,
0 it H#Z,,Z,.

Applying again 1.2(e) we have deg,(f, ) = degy(F, Q,x U,)for all He H and
the proof of Theorem 4.1 is complete.

To sketch the proof of Lemma 4.3 we have to collect some basic facts
concerning representations of the group K = Z, . In what follows we identify
Z_, with a subgroup of S*. Let y denote the generator of Z,, corresponding to
exp(2ni/m). Suppose Wis a representation of Z,. According to the conven-
tations we have adopted in Section 1, W = (W, g), where W is a finite-
dimensional linear space over R and ¢: Z,,—GL(W) is a group homomor-
phism. Wis called irreducible if there is no decomposition W = W, @ W, such
that both W, and W, are positive-dimensional“subrepresentations of W.

Let Ly (W) denote the linear space of all linear K-equivariant maps of W
into itself and Aut,(W) the group of all linear K-equivariant automorphisms of
W: IeAuty(W) will denote the identity. For je N define g Z,,,—>GI((2, R)
by

cos jO —sin jO
sin j cos jf ]

Q j(em) = |:

Let Q, = (R?, g;). We will need the following fact which is an easy consequence
of the introduced definitions.

4.4, LEMMA. For given je N let A; = o,(y). If A # I, —1 then Lg(Q)) and
C are isomorphic as linear spaces over R.

As a direct consequence of 4.4 we obtain the following simple observation.

4.5. COROLLARY. Suppose L(Q)) ~ C and Wis the direct sum of k copies of
Q,. Then Aut, (W) is isomorphic to GL(k,C) (= the group of all C-linear
automorphisms of C*).

In the case where m is even and m=2u we let Q,= (R, g,) where
0o: Z,—~GL(1, R) is defined by g,(y) = —I. In this case every linear map of
Q, into itself is K-equivariant. Therefore we have the following:

4.6. COROLLARY. Suppose W is the direct sum of k copies of Q,. Then
Auty (W) is isomorphic to GL(k, R).

4.7. ProprosITION (Serre [20]). Suppose W is a nontrivial irreducible
representation of Z,.

(%) If mis odd and p = (m—1)/2 then Wis 2-dimensional and there exists j,

1 € j < p, such that Wis equivalent to Q;. Moreover, if 1 <a <p < pthenQ,is
not equivalent to Q,.

4 — Annales Polonici Mathematici LIL3
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(x%) If mis even and p = m/2 then either W is 2-dimensional and there exists
j, 1<j<u, such that W is equivalent to Q,, or W is l-dimensional and
equivalent to Q,. Moreover, if 0 < a < f < u then Q, is not equivalent to Q,.

4.8. PROPOSITION. Suppose that W is a representation of K = Z,, such that
WX = (0}. Then admitting W, =0 as an empty sum, we have:
(*) If misoddthen W = W, ®...® W,, where u = (m—1)/2 and each W, is
equivalent to direct sum of Q.
(#+) If mis even and m =2y then W =W, @ W, ®D...® W, -, where each
W, is equivalent to a direct sum of Q.

Proof of Lemma 4.3. The Schur Lemma implies that with respect to the
direct sum decomposition W = W, @ W, @...@® W, the linear map AeAuty W
is of the diagonal form

A= ,  where A W-W,.
A

u

Thus Autg(W) = Aut (W) x Autg (W) x  x Aute(W,). Since GL(k, C) is
connected and GL(k, R) has two connected components the result follows.

Case 2. K=G =S

Recall that in Case 2 we assume that the restriction of fto Q is of class C!,
0 is a regular value of this restriction, M =f~1(0) is connected (therefore
diffeomorphic to §') and G, = S! for all xe M. Recall that there is a unique
decomposition V = Ve V'@...@V*, where V' = R[k;, m;]]. For xe M let
A(x) = Df (x), thus the assignment x4 (x) defines a continuous mapping from
M into L(V@R, V). Moreover, for each xe M, A(x) is equivariant and
epimorphic. The Schur Lemma implies that, with respect to the direct sum
decompositions V=V@V®..®V* VOR=(V°OROV'®D...0 V"
A(x) is of the diagonal form

A%(x) 0
A() = A1)
0 A (x)

where A%(x): VS@R—-V? is a linear epimorphism and A;(x): V'- V' are
linear isomorphisms.

The S action defines a complex structure on ¥/ by i*x = gx, where geS?,
g = e™2™) Moreover, an R-linear map of V/ is equivariant iff it is C-linear
with respect to this structure. So, for i = 1, ..., k, V¥ are complex linear spaces
and A4,(x) are complex automorphisms (cf. 4.5).

Recall that nl(GL(m, C)) (the fundamental group of GL(m, C)) is isomor-
phic to Z and the isomorphism is induced by det. Let d: S' =M be a fixed
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diffeomorphism such that sgn(4%(x), v) = —1 where v = d'(z)(1), z = d™!(x).
We set y, = Ajod: §' ->GL(V', C). Let p,e Z ~ n, (GL(V*, C)) denote the class
of the loop ¥,.

4.9. THEOREM. Suppose f € C4(Q, 80Q) satisfies all the assumptions of Case 2.
Then
Pq !f H= Sl = Ga
degy(f, Q=<p i H=Z,,
0 ifH#Z, and H+#G,
where p,€Z, is defined in Section 2.

The idea of the proof is to find 2 normal G-map of simplest form in the
homotopy class of f. We begin with the following statement whose proof is left
to the reader.

4.10. LEMMA. Suppose that V is a complex linear space of dimension k and
ey, ..., & is a basic of V over C. Then for every map y: S' -+GL(V, C) there
exists a homotopy A: S' x I—-GL(V, C) such that A(z, 0) =y(z) and

zp
Az, 1) = L in the basis e, ..., &,
1

where p is the class of y in =, (GL(V, C)).

Denote by U, a tubular neighbourhood of M in the open set
Q¢ c V°@R. 1dentifying U, with a closed neighbourhood of the zero section
in the normal bundle, we define a retraction r: U,—>M by

r(x) =x, if xexy,+N,,.

Next, let D, ..., D, be discs in V!, ..., V* respectively such that , = Ugx D,
x  xD, is contained in Q. For y,= 4;0d: §* ->GL(V’, C) we denote by
Aj the map A,(d~1("), 1): M—>GL(V/, C), where A4, is given by Lemma 4.10
for y =y,

4.11. PROPOSITION. Let f satisfy the hypothesis of Theorem 4.9. Then for
sufficiently small Uy, Dy, ..., D, the G-map f,: (@,, 32,)—(V, V\{0}) given by

J106, yis oo Y = AS(rO))(x —r(x) + X AY{r(x))y;
is G-homotopic to f in Cg4(Q,, 89,).

Proof. Since 4)(x): V/— V4, 1 <j <k, are G-equivariant, f, is G-equiva-
riant. It is evident that the G-map #°: (2, x I, 0Q, x I)~(V, V\{0}) given by

H X, Y11 oo Vo 1) = AT (x—r(x)+ L A,(d7 (), 1)y,
yields a ‘G-homotopy between f; and the map
AS(r(x))(x—r(x))+ . A4,(r(x)y,.
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This last map is G-homotopic to f in Cg(€2,, 02,) by a Rouché principle
argument. This proves the proposition.

In the remainder of the proof of Theorem 4.9 we assume
Q,=Q=U,xD;x xD, to be as in Proposition 4.11. Starting from the
map f, we next construct a normal G-map f, G-homotopic to f;. For this
purpose we introduce maps h;: M xD;—V/, 1 <j <k, setting

b, 9) = {y if 1]l < 3,
adj(x) e/ y+1—a)E2lyl)y i fe< Iyl <e,
where ¢ is the radius of D; and o = 2|y||/e—1.
4.12. LeMMA. Let h; be as defined above.

(1) hy'is G-equivariant as a map of y.

(2) If llyll =& then hy(x, y) = Aj(x)y.
(3) If hy(x, y)=0 for y #0 then

-1 0
, 1
Ajx) =
0 1
(The last means that (d~*(x))” = —1, or equivalently, x lies in the image of the

set C; = {zeS": 2 = —1})

(4) For every xeC; there exists only one orbit G e D ; Such that
hy(x, y) = 0 for any ye Gy°. In fact, y° = (y,, 0, ..., 0) with ||y°|| = 2¢/3, in the
basis ey, ..., e, of V, over C (cf. 4.10).

(5) Let y, = (0, 2¢/3) in the basis e,, ie, of the plane Cx {0} x  x {0}
< V4. If w= —e, and n = ie, are respectively the tangent and normal vector to
Gy, < C then the matrix (0h;/0y)(x°, y°), x°€d(C)), from the basis {n, w, e,,
iy, ...y €, iy} to {ey, iey, ey, i€y, ..., €, ie, } has the form

00 0
-3 0
1
0 IJ
(6) In the R-basis {e,, ie;, e,, ie,, ..., ¢, , e, } we have
p;e/3

oo, y7) = | °
0

where v = d'(z)(1), z = d~1(x°).
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Proof. An easy computation shows (1)-(4). To prove (5), observe that
hy(x°, y° +tiey) = hy(x°, (26/3 +t)ie,) = [2e—3(2e/3 +1)]ie,,

which shows that (9h;/dn)(x°, y°) = —3ie,. The second column of the matrix in
question is the zero vector, because w is a tangent vector to Gy° and h, vanishes
on this orbit. Finally, observe that h, has the form h(x, y) = (h}(x, y),
Y3 « s Vi), Which gives (5). Also a direct computation shows (6), This completes
the proof.

4.13. PROPOSITION. Let hj(x, y), 1 < ] < k, be the G-equivariant map of
Lemma 4.12. Then the map f,: (2, 8Q)—(V, V\{0}) given by

L2006, Y1, o V) = AG(r(x))(x—r(x))+Z hj("(x)- }’j)
is G-equivariant, normal and G-homotopic to f, in C4(Q, 89).

Proof. Since the h; are G-equivariant, f, is G-equivariant too. We will
show that f, is normal for the constant &/2. For any subgroup H = §! with
Vy # 0 we have

(VE@®R!' =V'®...®V¥* for some 1<j, <... <j, <k

It follows that P¥(x, y,, ..., y) = Yy -+ o> ;) for every (x, y,, ..., y)efl. If
IPH(x, py, ..., yll < ¢/2 then ||y, || < &/2, and from the definition of h;, we
have h(r(x), y) =y, for j=j,, ..., j,. It follows that

Pﬂfz(xv yl’ vy yk) = hh(r(x)i yj;)+ +hjr(r(x)’ y.lr) = y.fl + +er

as desired. Let us join the maps f, and f, by the linear homotopy H((x, y), t)
=tf,(x, y)+(1—1t) fi(x, y). It is sufficient to show that H has no zero
on dQxI. If (x, y,, ..., y,)€0Q then xedU, or y,edD, for some 1 <j<k.
By symmetry, we can assume that y,€dD,. Denoting by P, the pro-
jection onto V!, we have P H(x,y,, ..., Jpo ) = thy(r(x), y)+(1—1)
x Ay (r(x))y, = Ay (r(x))y, #0. Hence H(x, yy, ..., ¥, 1) #0. The prool is
complete.

Observe that for a given (y,, ..., ), if f3(%, ¥, ..., y) = 0 then x| C;
where the j are such that y,#0. This means that there exists
(%, ¥ys .-, Y €S2 1(0) with at least two nonzero coordinates y;, y, if C,nC,
# @. We shall avoid this possibility in the next step of our procedure. For fixed
Cyy...,C, we can find z,,..., z,€S* such that the sets z,C,..., z,C, are
mutually disjoint. Define §;: MM by 8,(x) = d(z,-‘\‘(d‘l(x)b

4.14. PROPOSITION. Let 0, 1<j <k, be as defined above. Then the map
f3: (@, 0Q) - (V, V\{0}) given by

S30, Yy oo Y = AS(r)(x—r(x) + X b, (6;7(x), )

has the following properties:
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(i) f, is a G-equivariant, normal and G-homotopic to f,.

(i) If f3(x, yys .., V) =0 then at most one y; is different from zero.
Moreover, Qunf3' (=@ if H#Z,, 1<j<k, H#S§', and Qunf3'(0)
consists of p; distinct orbits if H=1Z,, .

Proof. Since the h; are G-equivariant in the second variable, f; is
G-equivariant. Observe next that homotopies joining the maps 0, to the
identity on M induce a G-homotopy between f, and f;. By the same argument
as in Proposition 4.13, f, is normal. If f(x, y;,..., y) =0 and y, # 0 then
0,(x)€d(C}), or equivalently d~'(x)ez,- C,. Since z, C,, ..., 2,C, are mutually
disjoint, it follows that only one y, is different from zero. Suppose that
X, y1s s VIERQyNS31(0) where H=Z, . On account of the above,
% Vis o0 Y =,0,...,0,,0,...,0). This shows that Qunf3;'(0)
= {d(z;C;)+ Gy}, which means that the last set consists of p, distinct orbits.
Furthermore, if H# Z,,, j=1, ..., k, H # §' and Qg # @ then any point of
@ has at least two coordinates y, different from zero, which implies
Qunf31(0)=0. This ends the proof.

Proof of Theorem 4.9. By G-homotopy invariance, degy(/f, )
= degy(fy, Q) for every H. Suppose that H# §* and H# Z,,, j=1,..., k.
Since QN f31(0) = @ and f; is normal, degy(f, Q) = 0. Finally,let H = Z,, ,
and p = |p,|. From what has already been proved, we have

Qun f310) = {x,+Gy, ..., x,+ Gy},

where  {x,,..,x,} =d(z;C)cM and yeD, 3e<]|yl<e. Fix
xe{x,, ..., x,}. The derivative D f;(x+y) has the form

N, T, Vi 4
4y O 1 vS
0 0 1 4
1
C D v/
1
_ 1] vk

with zeros in the remaining places, where T,, N, = V¢ @ R are respectively the
tangent and normal spaces to M at x, 4y = A°/N,, C = (0h;/0x)(x, y) and
D = (Bh)/dy)(x, y). Since G(x+y) < 24 is an isolated orbit in the zero set of
a normal map f;, we can compute degy(f;, 2) by definition. Let w be the unit
tangent vector to G(x+y) at (x+y) (as in 4.12(5)). We observe that

sgn(D f3(x+y), w) = sgn(A4%(x), v)-sgn(p)-(—1).

Since sgn(4°(x), v) = —1, we have degy( /3, Q) = p,. The proof of Theorem 4.9
is complete.
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5. S'-degree in Banach spaces. In this section we will extend the results of
the preceding sections to the case of G-equivariant maps between subsets of
Banach G-spaces (G = S*). Our approach imitates closely the Leray-Schauder
extension of the classical degree theory.

5.1. DEFINITION. Let E be a Banach space and let GL(E) denote the group
of all its linear automorphisms. E is called a Banach G-space or a representation
of G if there is given a homomorphism g: G— GL(E) such that the map
u: GxE—E defined by u(g, x) = g(g)x is continuous. Note that, by the
Banach-Steinhaus theorem, assuming the continuity of ¢ as a map from G into
GL(E) equipped with the strong topology, one obtains an equivalent definition
of a Banach G-space.

Note also that since G = §' is compact, we may assume that g satisfies the
following condition:

(*) e(g): E—E is an isometry for every geG.

Indeed, if ||-|| i 2 norm in E then the formula

1|, = ille(g)xlld#,
where u denotes the normalized Haar measure on G, defines an equivalent
norm such that |le(g)x|l, = [|x||, for all geG.

In what follows we assume that E is a Banach G-space with a norm || ||
satisfying (*). We denote by E @ R the direct product of E and R, i.e. E®R is
a Banach G-space by g(x, t) = (gx, t). We also let 0: E@R— E denote the
projection.

Recall that if X is a topological space then a continuous map f: X = E is
called compact if the closure of f(X) is a compact subset of E.

5.2. DEFINITION. Let E be a Banach G-space and let X be a topological
G-space. A continuous map f: X - E is called a compact G-map if it is
G-equivariant and compact. We say that a continuous map h: X x[0, 1]—-E
is a compact G-homotopy if it is compact and h(gx, t) = gh(x, t) for all xe X,
geG and te[0, 1].

Our aim is to define a degree for S'-equivariant maps of the form
Q+f: @—E, where Q is an open bounded invariant subset of E@R and f'is
a compact G-map such that (Q+/)(8Q) = E\{0}.

5.3. THEOREM. Let Q run through the family of all bounded invariant subsets
of EQR and f: X »E through compact G-maps such that X c E®R is
invariant, @ = X and (Q+f)(8Q) = E\{0}. Then there exists an sf/-valued
function Deg(Q +f, Q), called the S'-degree, satisfying the following conditions:

(a) If degy(Q+f, 2) # 0 then (Q+/)7'(0)n Q" £ .

(b) If Q,<Q is open, invariant and (Q+f) ' (Q)NQ < Qy then
Deg(Q+f, 2) = Deg(Q +f, £,).
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() If Q,, Q, are open invariant subsets of Q such that Q,NQ, =3 and
@+ ONQ = 2,00, then Deg(Q+/, Q) = Deg(Q+/, 2,)+Deg(@+1, 2,).

) Ifh: §Ix[0, 11> E is a compact G-homotopy such that x+ h(x, t) # 0 for
all (x, )€dQ x [0, 1] then Deg(Q+hy, 2) = Deg(Q +hy, Q).

(€) Suppose E=E,@E, and Q =, x§,, where Q; (resp. ,) is an open
bounded invariant subset of E, (resp. E,®R). Let Q,: E,®R—E, denote the
projection. Suppose further that 0eQ, and f,: Q,— E, is a compact map such that
0,0)+() #0 for all yedQ,. Define f: Q—-E by f(x,y)=1f0), where
(5, )€ = 3, x 0, < E, ®(E, ®R). Then Deg(@-+f, Q) = Deg(Q,+/y, Q).

Recall that a G-map f: X - E, where X is a G-space, is called finite-
dimensional if there exists a finite-dimensional subspace L < E such that

f(X)= L

The proof of Theorem 5.3 is based on the following approximation lemma.

5.4. LEMMA. Let X be a bounded closed invariant subset of a Banach G-space F,
A G-map f: X —E is compact if and only if it is the limit of a uniformly convergent
sequence of finite-dimensional G-maps.

Proof. The condition is evidently sufficient. Our proof of necessity follows
the classical lines (cf. Dugundji—Granas [9]). We will prove that for every ¢ > 0
there exists a G-equivariant finite-dimensional e-approximation of f. For
a given & > 0 choose an e-net {y,, ..., y,} for f(X). Since the set of elements of
E whose orbits lie in a finite-dimensional subspace of E is dense in E (Mostow
[18]), we may assume that gy, <V, i =1, ..., k, where V; is a finite-dimen-
sional linear G-subspace of E. Thus there exists a continuous map ¢,: X =V
=V, +... + ¥, such that [[f(x)—¢,.(x)|| <& for all xeX. Set

J.0) = ‘I; go.(g~ "' x)du.

Clearly f, is a G-map, f,(X) = V and || f (x) —f,(x)|| < ¢ for all xe X. The proof is
complete.

Suppose now that Q is an open bounded invariant subset of E@® R, and
f: Q—E is a compact G-map such that (Q +f)(8Q) = E\{0}. Since (Q +/)(3)
is closed in E, we have n = inf{||Q(x)+/ (x)||: x€dR} > 0. By 5.4 we can find
a G-invariant finite-dimensional linear subspace V < E and a G-map f,: O~ E
such that f(@Q)cV and ||f(x)—f,(x)ll <n for all xef. Thus Q+f;:
(Q, 02)—(E, E\{0}) and (Q+f) (2~ V@®R) < V. Therefore, by Section 3,
Deg(Q+f,, 2NV @R) is defined.

5.5. DerINITION, Deg(Q+/, Q) = Deg(Q+f,, @n V@ R), where V and f,
are as above.

Using Lemma 5.4, the homotopy invariance and the contraction property
of the S*-degree in the finite-dimensional case (1.2(d) and (e)), one can check
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that the definition of Deg{Q +f, ©) does not depend on the choice of f, and V.
The argument is the same as in the case of the Leray-Schauder degree.

Proof of Theorem 5.3. To prove (a) take a sequence ¢, such that
lime, =0 and ¢, < inf{||Q(x)+f(x)||: xedR}. By 5.4 there exists a sequence
{f.}, where f,: @V, is a G-map, V, is a finite-dimensional linear G-subspace
of E and f, is an e,-approximation of f. By 5.5, Deg(Q+f,, 2nV,®R)
= Deg(Q+f, @) #0. Therefore, by 1.2(a), for every n there exists
x, = (y,, )€ Q" such that y,+f,(y,, t,) = 0. Since f(Q) is compact we may
assume that {f(x,)} is convergent. Then

Yn = Ymll = 1Saln) =FalXadll < 1S Cen) =S (el + 84+ 1

and thus {y,} converges. We may assume that (y,, t,) = (),, t,). Therefore
yo+f (Vs to) = 0. This completes the proof of (a).

(b) and (c) are easy consequences of 1.2(b) and (c), respectively. To
prove (d) suppose that h: Q@ x[0, 1]—>E is a compact homotopy such that
Q(x)+h(x, t}y =0 for all (x, t)edQx [0, 1]. Given & > 0, using again 5.4, we
find a finite-dimensional e-approximation h,: 2 x[0, 1]-V such that
Q(x)+h,(x, t) # 0 for all (x, t)edQx[0, 1]. Then, by 5.5 and 1.2(d),

Deg(Q + ho, ©) = Deg(Q+(h,),, 20V ®R) = Deg(Q+(h,),, 20V DR)
= DCg(Q+h1, Q)'

Finally, (e) follows easily from Definition 5.5 and 1.2(e), which completes the
proof of Theorem 5.3.

With a view to applications discussed in the last sections it is convenient
to extend the definition of the S!-degree to a slighty larger class of maps.
Consider two Banach G-spaces E and F together with a linear G-isomorphism
T: E5F. Let Qc E®R be an open G-invariant bounded set. We will
consider G-maps of the form TQ+f: €—F such that f is compact, where
Q: EQR—E denotes the projection.

5.6. DEFINITION. Suppose that Q is an open G-invariant bounded subset of
E®R and f: - F is a compact G-map such that (TQ+/)(022) = F\{0}.
Define the S'-degree of TQ+f by Deg(TQ+f, 2, T) =Deg(Q+T ™' 1, Q).

As a direct consequence of Definition 5.6 we obtain the following
reformulation of Theorem 5.3.

5.7. THEOREM. Let 2 run through the family of all open bounded invariant
subsets of E@R and f: X — F through compact G-maps such that X < E@R is
invariant, @ = X and (TQ+f)(Q) = F\{0}. Then there exists an s/-valued
function Deg(TQ+f, Q, T), called the S'-degree, satisfying the following con-
ditions:

(@) If degg(TQ+S, Q, T) # 0 then (TQ+/f) 1 (0)nQ" % @.

(b) If Q,<c is open, invariant and (TQ+f) ' (0)nQ < Q, then
Deg(TQ+f, 2, T) = Deg(TQ+f, 2o, T)-
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©) If Q, R, are open invariant subsets of Q such that Q,NQ, =@ and
(TQ+/)(0)nQ c Q,uQ, then Deg(TQ+f, 2, T)=Deg(TQ+f,Q,, T)
+Deg(TQ+f, 2;, T)-

d) If h: @x[0,1]+F is a compact G-homotopy such that
TQ(x)+hix, 1) #0 for all (x,)ed@x[0,1] then Deg(TQ+h,, Q, T)
= Deg(TQ+h,, 2, T).

(e) Suppose E=E,®E,. For i=1,2set F;=T(L) and let T;: E,~F,
denote the restriction. Suppose also that Q = Q, x Q,, where Q (resp. ,) is an
open bounded invariant subset of E, (resp. E,®R). Assume further that 0eQ,
and f,: 2, F, is a compact map such that TQ(y)+/;(y) # O for all yedQ,.
Define f: 2~ F by f(x, y) =f5(¥), where (x, y)eQ = Q,xQ, < E, ®(E,®R).
Then Deg(TQ+f, Q, T) = Deg(TQ, +/5, 25, T5), where Q,: E,®R—E, de-
notes the projection.

6. Computations in Banach spaces. Let E denote a real infinite-dimensional
Banach space. We will use the following notations:

L(E)  =the Banach algebra of all linear and continuous operators
from E into itself,

IeL(E) — the identity operator,

K(E) the ideal of compact operators in L(E),

GL(E) the group of all invertible operators in L(E),

L.(E) ={AeL(E): A=I1+B, BeK(E)},

GL(E) = GL(E)n L.(E).

If E,, E, are closed subspaces of E such that E = E @ E, (ie. E; and E,
are complementary) and A e L(E) then the decomposition E = E, @ E, deter-

mines a matrix
I:All AIZ]
Ay Ay

6.1. DEFINITION. Let Be K(E). A real number p is called a characteristic
value of B if Ker(I—uB) # {0}.

where A, E,»E;, i,j=1, 2.

Note that p is a characteristic value of B if and only if u 0 and ™! is an
eigenvalue of B. Therefore by the Riesz-Schauder theorem, any closed interval
contains only a finite number of characteristic values of B. For a characteristic
value u we let L(p) = ) Ker(I—puB); L(u) is called the generalized kernel of
I—uB. It is known that dimL(y) < 0.

Suppose now that 4 = I—Be GL_(E). Denote by {y, < < J,} the set
of all characteristic values of B contained in [0, 1]. Let L = L(u,)+ +L(u,)
(L = {0} if B has no characteristic value in [0, 1]) and set sgn 4 = (— 1)¢, where
d = dimL. The following proposition collects standard properties of sgnA.
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6.2. ProposiTION (cf. Kato [16]).

(a) GL(E) has two connected components. A,, A, e GL.(E) are in the same
connected component if and only if sgnA, = sgnA,.
(b) If E=E ®E, and AcGL(E) is of the form

—_ All A12
A‘[o Ay, I

Consider now the Banach space E@R and let Q: E@R - E denote the
projection. Let L(E@ R, E) denote the Banach space of linear operators from
E®R into E. Let

K(E®R, E) = the subspace of compact operators in L(E®DR, E),
SL(E)={A€L(E@R, E): A(E®R)=E and A= Q+B, BeK(EDR, E)}.

Suppose now that AeSL(E). Since 4 is a Fredholm operator of index
1 and A is surjective, dim Ker4 = 1. Choose veKer 4 such that v # 0 (note
that this determines an orientation of KerA4). Let £&: E@ R—R be a linear
functional such that &(»)=1. Define A7: EQR—-E®R by A~(x)
= (A(x), &(x)). Clearly 4~ e GL (E®R). Set

sgn(A4, v) = sgnAd”~

then sgnA =sgnA  sgnA,,.

It is easy to check that the above definition is correct and independent of the
choice of &.
From 6.2 we obtain at once

6.3. PROPOSITION. If AeSL.(E), E=E, ®E,, veKerAc E,, v # 0 and,
with respect to the decompositions EGR=E @®E,®R, E=E @®E,, A has
the representation

All A12 El El
A= @ -
0 A4,,| E,®R E,

then sgn(A, v) = sgnA,,sgn(A,,, v).

Consider now two Banach spaces E, F together with an isomorphism
T: F>E. Let Q: F®R - E be defined by Q(y, t) = T(y). Let K(F, E) (resp.
K(F @R, E)) denote the space of all compact linear maps from F (resp. F® R)
into E. Set

GL(T) = {A: A= T+ A, F-E is an isomorphism, 4,€ K(F, E)},
SLo(T) = {A: A=Q+A,: FOR—E, AjcK(F®R, E), A(F®R) = E}.
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For AeGL((T) we set
sgn A = sgn(T ' 4).

Take BeSL.(T); obviously T™'BeSL(F). As in the case T =1 we have
dimKerB = 1. For veKerB, v 0, we set

sgnr(B, v) = sgn(T™!B, v).
As a direct consequence of the above definitions, we have

6.4. ProrosITION. Suppose A€ GL(T), BeSLy(T), veKerB, v # 0.
(a) TeGL,(4) and sgn, A =sgn,T.

(b) If n: [0, 11 GL(T) is continuous, then sgnyn(0)} = sgnrn(1).
(c) sgor(B, v) = sgn,pAsgn (B, v).

Suppose now F=F ®F, and let E,=T(F), i=1,2. Clearly
E=E ,®E, Let T: F,—E, i=1, 2, denote the corresponding restrictions.
Suppose further that BeSL.(T) and, with respect to the decompositions
FOR=F @F,®R, E=E ®E,.

B,, B
o (o 5]
and veKerB < F,®R. Then we have
6.5. PROPOSITION, sgn (B, v) = sgny (B,,) sgny,(B,,, v).
Suppose now that we have isomorphisms of Banach spaces:
T: F-E, R: F,»E, &: FOR-F @R, ¥: E-E,.

Suppose. further that RQ, @ = YTQ, where Q, 0, denote the corresponding
projections.

6.6. PROPOSITION. Assume that AeSL(T) and xeKerA, x# 0. Then
YA®~ ' eSL.(R) and sgnp(¥YAP~ !, &(x)) = sgny(4, x).

Now we are ready to formulate an infinite-dimensional generalization of
Theorem 4.1. As above, we consider two Banach G-spaces E, F together with
a G-equivariant isomorphism T: F — E. Suppose that Q < F@ R is bounded,
open, invariant and f: Q—E is a C'-map of the form f(x, p) = Tx+ ®(x, p),
where @ is a compact G-map. Suppose further that there exists ae Q such that
G,=2,#S5",f'0)=GacQ and Df(a): F®R—E is surjective. Let
K=2Z, and let fX QX EX denote the restriction of f. Clearly
Df¥*(a): F*@® R~ E¥ is also surjective. Let v denote the tangent vector to the
orbit Ga at a. Notice that ve KerDf X(a). Finally, let R = T¥: FX - EX denote
the restriction of T.
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6.7. THEOREM. With the above assumptions we have:
(@) If sgnp(Df (a), v) = sgng(Df¥(a), v) then

. ‘ = =
degy(f, @, T) = {;sna(Df (@), 9 :J{g; ﬁ z,

(b} If sgnp(Df (a), v) = —sgng(Df*(a), v) then k is even and, letting k = 2m,
we have

sgng(Df*(a), v) ifH=K=2,,
dch(fa Q,7)= '_SgnR(DfK(a): U) if H= Zm:
0 fH#Z, and H+Z,,

We shall use a linear slice in the proof of 6.7.

6.8. THEOREM. Let E be a Banach representation of G = S*, x, a point of E,
and K the isotropy group of x,. Then there exist a K-equivariant linear subspace
N c E (of codimension equal to the dimension of G/K), a ball B,(N) in N with
center at x, and an open neighbourhood U of Gx, such that the map
n: Gx B,(N)=U given by n([g, v]) = gv is a G-homeomorphism.

(See Jodel-Marzantowicz [15] for the proof of this theorem for any
compact Lie group.)

Proof of Theorem 6.7. First we observe that Q can be replaced by the
open tube U = G x zB,(N) given by 6.8. For a given G-map ¥ from U into
some Y we denote by ¥ its restriction to Uy = {e} x xB,(N) = N. Obviously
¥, is K-equivariant. As in 4.2 the assignment ¥+ ¥, gives a one-to-one
correspondence between G-maps from (U, 8U) into (Y, Y\{0}) and K-maps
from (U, U,) into (Y, Y\{0}) for any G-representation Y. The inverse
assignment is ¥y—Gx ¥y, where Gx¥,([g,v]) = g¥Py(v). The same
assignment gives a one-to-one correspondence between equivariant homotopy
classes too.

In order to derive degg:(f, U, T) we have to compute degg (T~ 'of, U).
Note that T 'of = Q+ T 'o®, where Q: F®R—F is the projection. Let
¥ = T~ 1of; then D¥(x,) = Q+ T~ 'oD®(x,) is K-equivariant, so the formula
¥~ (x) = D¥(x,)(x—x,) defines a K-equivariant map. Note also that since
Gxo =M =f"*0)nU, M is a smooth manifold of dimension 1 and there
exists a unique tangent vector xo. Moreover, N is a normal space at xj, ie.
N @span(xp) = FOR. From a Rouché principle argument applied to the
isomorphism W3 it follows that there exists an open K-invariant subset
U, = U, such that ¥y and ¥} are K-homotopic as maps of pairs (U,, dU,)
~(F, F\{0}). As a consequence, ¥ is G-homotopic to Gx ¥ on GU,.

Next, we G-homotopically replace Gx ¥4 by a G-map which is
a finite-dimensional perturbation of Q.
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6.9. LEMMA. There exists a K-homotopy n: [0, 1] x N —F such that:
(a) for every t the map n(t, ) is K-equivariant, compact and linear,
(b) for every t the map Q-+n(t,") is an isomorphism,

© 700, )= T_lDfN(xo),
(@) n(1, - )N)< V, where V is a G-invariant finite-dimensional subspace

of F.

Proof The lemma can be proved by a modification of nonequivariant
arguments of the proof of the fact that a compact linear perturbation of
identity can be deformed through isomorphisms into a finite-dimensional
perturbation of identity.

After this preparation we are able to complete the proof of Theorem 6.7.
Denote GU, by @,. Observe first that we can assume M = ¥~'(0)nQ,
to be a subset of a finite-dimensional subrepresentation V, = F @ R, where
V, = W®R. (Since G is abelian, (F @ R)X is a subrepresentation of F®R.) Let
ye(F @ R)* be a vector having a finite-dimensional orbit which is close enough
to x,. Since Uy, is a slice there exists ge G such that y, = gye Uy. It is easy to
check that the map ¥'(x) = G x (¥ y(x+x,—yo) is G-homotopic to ¥, and
P 10)nQ, = Gy,. Let V, = F be the subrepresentation given by 6.9, and
V=V,+V, Let ¥~ = Q|y+n(l, ) where n is given by 6.9. From 6.9 and
6.4(b) it follows that

an(DlP(xo)s x’o) = sgn(D(G X g ¥7)(xg), x’o),
SgD(D ‘I’K(xo)a x,O) = Sgn(D(G X Klp‘.')x (xO)s x;))s
since xq€ KerD¥(x,) = KerD(G x (¥~ )(x,) < (F® R)*. By the properties of
the S'-degree,
Deg(¥, Q,) = Deg(Gx ,¥~, Q,).
Since G x y¥~ = Q+ @~ with ¢~ (Q,) = V, from Definition 5.5 it follows that
Deg(oly, 2y) = Deg(Gx ¥~ 2,),

where Q) = Q, NV and o is the restriction of G x (¥~ to Q,. Let next F, be
a subspace of F such that F, @V = F. With respect to this decomposition
D(G x ¥7)(x,) has the form

D(Gx (¥7)(x0) = [O id

From 6.3 it follows that
sg0(¢' (o), Xo) = 5g0(D(G x x¥™)(xo), Xo),
sgn(e’ (xo), xo) = sgn(D(G x x ¥ ~)¥(xq), xb).
Now Theorem 4.1 applied to (¢l,, 2,) gives the conclusion of Theorem 6.7.

Do(xy) S jl
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7. S*-degree and periodic solutions of ODE. Throughout this section we
shall assume that ¢: R">R" is a C® map. Consider the autonomous
differential equation

(+) y(©) = o(y(®).
For each ve R" there exists a unique solution of (x), y(f) = #(v, t), satisfying
y(0) = n(v, 0) = v and defined in an open t-interval I, containing 0. We will
denote by Q = R"x R the union of the sets {v} x I,, where veR", Clearly Q is
open and n: Q—R" is a C® mapping which satisfies, wherever defined, the
group property
n(n, 3), t) = n(v, s+¢).
Set
Q,={v,)eQ:t>0}, Z=/{(v pel:: n,p)="v}.
Recall that veR” is called a stationary point of (¥) if @(v) =0. We let
Sing(p) = {veR": ¢(v) = 0};

note that Sing(p)x (0, c0) < X.

Define the nonlinear Fuller map associated with the equation (%),
n: Q- R", by n(w, ) = w—n(w, A). We let P: R"@® R — R" denote the lincar
map Dn(v, p) and call it the linear Fuller map associated with (¥) at (v, p).

We say that ve R" is a p-periodic point with respect to (%) if (v, p)e Z. If v is
a nonstationary p-periodic point then there is the least ¢ >0 such that
n(v, q) = v and p = mq. We call p the period, q the least period, and m = ¢~ 'p
the multiplicity of (v, p).

Suppose now that ve R" is nonstationary and p-periodic. Let P denote the
linear Fuller map of (*) at (v, p) and let A: R"—> R" denote the linear map
Dy ,(v), where n,(w) = n(w, p). Since 7, is a local diffeomorphism, A4 is a linear
automorphism of R". Moreover, 4(p(v)) = ¢(v) and thus 1 belongs to the
spectrum o(A4) of A. We say that v is elementary if the linear subspace of R"
corresponding to the eigenvalue 1 is one-dimensional and A has no eigenvalue
of absolute value 1 different from 1 (note that v is elementary if the periodic
orbit which starts from v is hyperbolic). Let L denote the one-dimensional
linear subspace spanned by ¢(v) and N the linear subspace corresponding to
o(A)\{1}. Clearly R" = N @ L. Note also that P(N) = N and P(0, 1) = —¢(v).
The above shows that if v is elementary then P(R"@R) =R".

Together with (x) we will consider the equation

(%) X' (1) = po(x(t))-
As a direct consequence of the introduced definitions we have:

7.1. Remark. Let (v, p)eR"x(0, 00). Then (v, p)e2, if and only if
equation (++) has a solution x: [0, 1]J— R" satisfying the initial condition
x(0) = v, and the solution is given by x(t) = (v, pt).
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We will use the following notations:

C! = C([0, 1], R") = the Banach space of C'-functions x: [0, 1]+ R"
with the standard norm,

C = ([0, 1], R") = the Banach space of continuous functions x: [0, 1]
- R" with the standard norm, '

E! = {xeC': x(0) = x(1), x'(0) = x'(1)},

E = {xeC: x(0) = x(1)},

S: C'>COR, S(x) = (x'+x, x(0)—x(1)),

T: E! - E, the restriction of S.

Clearly, both S and T are isomorphisms of Banach spaces.
For x: {0,1]-R" and g=e2>"eG =§' = {zeC: |z| = 1} define
x(t+0) for t+0 <1,
(9x)0t) = {x(t+0—1) for t+0 > 1.
With the above-defined S* action E' and E are S*-Banach spaces and T is an

equivariant isomorphism. Define f: E'@R—E by f(x, 1) = x'— Ap(x(-)). The
following is evident:

7.2. Remark. f is equivariant and f—T is completely continuous.
The following theorem states the main result of this section:

7.3. THEOREM. Suppose that veR" is an elementary p-periodic point and
(v, p) is of multiplicity m with respect to equation () and define {€E' by
&(t) = n(v, pt). Then there exists an open bounded subset % — E! x (0, o0) such
that f =Y (0)n% = G(&, p) and f(x, A) #0 for all (x, \)ed% and we have
(a) if sgn(P, ¢(v)) = sgn(P,,, ©(v)) then

degy(f, %, T) = {;g“(P  9o0) g g ) g...,

(b) if sgn(P, ¢(v)) = —sgn(P,,, ¢(v)) then m is even and letting m = 2u we
have

—sgn(P, o(v)) fH=1Z,,
degy(f, %, T) = < sgn(P, o(v)) ifH=1Z,
0 fH#Z, H#Z,

where P, denotes the linear Fuller map of (*) at (v, q) and P denotes the linear
Fuller map of (%) at (v, p).

We postpone the proof of Theorem 7.3 to the end of this section. First we.
will prove the following result which plays a crucial role in our argument.
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7.4. PROPOSITION. Suppose that ve R” is an elementary p-periodic point with
respect to equation (x). Define (cE' by &(t) =n(v, pt). Then Df(E, p) is
surjective, ¢’ € KerDf (¢, p) and

sgnr(Df ¢, p), &) = sen(P, o(v)),
where P denotes the linear Fuller map of (x) at (v, p).

Before proving 7.4 we have to prove auxiliary results. We use the following
notation:

[r C'®RSC, [ (x, ) =x—Ao(x(-)),

[T C'OR-COR, f~(x, ) =(f"(x, A), x(0)—x(1)},
¢=Df(, p), 2" =Df"({, p), 2~ =Df (¢, p),

y: Q-5 C'@R, y(w, }) = (x, 4), where x(t) = n(w, 1),
A™: C'@®@R—R", A~ (x, p) = x(0)—x(1).

It is easy to check that ¢ (x, 1) = x'(-)—=pD@(&(*))x(*)—A¢p(&(*)). Note
that f * (¥/(w, A)) = 0 for all (w, 1)e 2 and thus Dy(v, p)(R"@® R) « Kerd* Let

A: Kerd” - R”
denote the restriction of A~ and
y: C'nKerd* -R", y(x) = x(0).

Clearly y is an isomorphism.

7.5. LEMMA. With the above notations A(Ker®")= R" and sgn(P, ¢(v))
= sgn,(4, &).

Proof. Clearly n = A~} and thus P = ADy/(v, p). Since P is surjective,
A is also surjective. Let B: R"—+Ker®" denote the restriction of Dy (v, p).
Since y(y/(w, p)) = w, B is injective. Moreover, B(R") = C'nKer®" Thus,
since Dy (v, p)(0, 1)¢C*' nKerd* and dimKerd* =n+1, Dy(v, p) maps
R" @ R isomorphically onto Kerd*. Note that P = ADy (v, p) and yB is the
identity in R* and B(¢(v)) = p~'¢. Therefore 7.5 follows from 6.6.

7.6. LeEMMA. With the above notations we have:

(a) @~ is surjective and Ker®~ is the one-dimensional subspace of C*® R
spanned by &'

(b) sgng(®~, &) = sgn(P, ¢(v).

Proof First observe that &~ (x, 1) = ($"(x, 4), A'"(x, ). Since A~
maps Ker®* onto R" and &* is surjective, it follows that ¢~ is surjective and
the proof of (a) is complete.

5 — Annales Polonici Mathemalici LII.3
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To prove (b) note first that Ker®™ =Ker®* nKer4™ Define
¥: C!>C@R" by ¥(x) = (¢ (x, 0), x(0)). Obviously ¥ is an isomorphism.
Let F= ¥~ 1(C), F, = Y !(R"). We have the direct sum decomposition

roy F C
W= ®_’®)

where I': F—C denotes the restriction of ¥ and y(x) = x(0).
Recall that A: Ker®” —R" denotes the restriction of A~ Since
Foc Kerd*, C'@R=F®Ker®"~ We have

r o F C
®" = @ - @ )
-y, A| Ker¢" R"
where y,(x) = x(1).

Using 6.5 we have sgng(®~, &) =sgnp(I) sgn,(4,¢). If we let
S.(x) = (x'+x, x(0)—7x(1)), then for each 7e[0, 1], S,e GL.(S). Thus, by
6.4(b), sgngS, = 1. Now define n: [0, 1]—-GL.(S) by

() (x) = (1 —7)®* (x, 0} +7(x'+x), x(0)).
Since 7(0) = ¥ and #(1) = S, we have, using again 6.4(b), sgng¥ = 1. There-
fore, by 6.4(c), :
sghy (@7, &) = sgng(®™, &)
and the proof is finished.
7.7. LEMMA. sgng(®~, &) = sgn, (P, &).

Proof Let R: S™}(C)->C be the restriction of S, and

@,: STHCYDR~-C the restriction of @~ Consider the direct sum decom-
positions

¢, ¢,] STHC)®R C
" = ) - ®,
0 S, STYR") R

where S, denotes the restriction of §, and

® ¢&,] R"YE)®R E
¢1 = @ _’6!
0 R, R"YE,) E,

where E, = {xeC: x(t) = tw, we R"} and R, denotes the restriction of R. We
have C = E@E,. Applying 6.5 we obtain the desired result.
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Proof of Proposition 74. The equality sgn,(Df(¢, p), &)
= sgn(P, ¢(v)) follows at once from 7.6 and 7.7.

The last step in our proof of 7.3 is the following generalization of 7.4.

7.8. PROPOSITION. Suppose that ve R" is an elementary p-periodic point of
multiplicity m with respect to equation (x). Assume m = kv and let K = Z,. Let
X (EY @ R— EX denote the restriction of f. Define E€E' by &(t) = (v, pt).
Then DfK(&, p) is surjective, ¢ eKer DfX(&, p) and

sgnr(DF*(E, p), &) = sga(Ps, p(v)),
where P, denotes the linear Fuller map of () at (v, k™ 'p).

Proof. Consider the following isomorphisms of Banach spaces:

r: EY*@R—-E'@®R, I'(x, ) = (y, A), where y(t) = kx(k~1¢),

Y: EXSE, ¥(x) =y, where y(t) = x(k™*1),

R: E'5E, R(x)=x"+k™1x.

Together with () we consider the equation

(o) () =y (y@),
where : R"— R" is defined by y(w) = o(k™1w).

Recall that we have assumed that, with respect to equation (%), veR" is
a nonstationary elementary p-periodic point and (v, p) is of multiplicity m.
Furthermore, we have denoted by &eC! the solution of the equation
x'() = po(x(?)) satisfying the initial condition x(0) = v. Define

F: E*®@R—E, F(y,)=y—2(y(")),

and let ({, p) = I'(&, p). Since PfX = FI', we have ¥Df*(¢, p)=DF(,pI’

Furthermore, I'(¢') = k{’. Therefore, applying 6.6, we have

sgnr(DF*(¢, p), &) = sgng(Df (¢, p), £).

Set w(z) = (1—1)T+tR; clearly w(r) is an isomorphism for all 7€ [0, 1]; hence,
by 64, sgn,R =1 and thus sgng(DF((, p), {') = sgnr(DF(, p), {'). Thus

(i) sgnr(DF*(, p), &) = sgnr(DF (L, p), {).
Note that n~, the nonlinear Fuller map for (a,), is given by
(i) n~(w, A) =w—knk 'w, k™12).

Since v is an elementary p-periodic point for (%), kv is one for (o). Let P~
denote the linear Fuller map for (a,) at (kv, p). From (ii) it follows at once
that sgn(P~, ¥ (kv)) = sgn(P,, @(v)). Therefore using (i) and 7.4 we obtain

sgnT(DfK(és p)’ {l) = Sgn(Pk’ (p(v))
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Proof of Theorem 7.3. The theorem follows at once from Proposition
7.8 and Theorem 6.7.

8. S!-degree and the Fuller index. As in Section 7 we consider the
autonomous differential equation

(*) y' @) = o(y@),

where ¢: R"—R" is a C® map. In what follows we keep the notations
introduced at the beginning of the preceding section.

Suppose U is an open subset of R"@ R such that U = Q. We say that
U is admissible for ¢ if UNZ = (i.e. there is no periodic point on the
boundary of U). Recall that if U is admissible for ¢ then there is defined
a rational number ip(¢, U), the Fuller index of ¢ with respect to U (cf. Fuller
[11], Chow-Mallet-Paret—Yorke [5]). Assuming that U is admissible for ¢ let
C=UnZ; clearly C is compact. Define ¢: C—+E' @R by

(v, p) = (x, p), where x(t) = n(v, tp).

Since @ is continuous, #(C) is compact. Moreover, #(C) =f~*(0) and
£ Y O\D(C) is closed in E' @ R. Therefore there exists an open bounded subset
%cE'®R such that f[~Y(O)n% =P(C) and f~'(0O)nd% =O. Thus
Deg(f, %, T) is defined. For me N set

d, (o, Uy=degy(f, %, T), where H=1Z,.
Now we are able to state the principal result of this section.
8.1. THEOREM. If U < Q, is admissible for ¢ then

ir(, U) = 3 m'dy(o, U)

Prool First, consider a special case: there is an elementary periodic point
(v, p)e U such that

C={n(,1t); 0<t<p}.

In other words, we assume that C is one periodic orbit. Let m be the
multiplicity of (v, p) and m-¢q = p. Let (as in 7.3) P,, denote the linear Fuller
map of () at (v, g) and if m is even, m = 2y, let P denote the linear Fuller map
of () at (v, p). Tt follows from 7.3 that there are two possibilities:

(a) sgn(P, p(v)) = sgn(P,,, ¢(v));

in this case dy(¢, U) =0 for k # m, d(p, U) =sgn(P, ¢(v)) for k =m and
because from the definition of the Fuller index we have i.(¢p, U)
=m~'sgn(P, ¢(v)), the conclusion follows at once;

(b) m is even and sgn(P, ¢(v)) = —sgh(P,, @(v);
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in this case

ir(@, U)=m™'sgn(P, o(v)) = (u ' —m~")sgn(P, o))
=p"d, (e, U)+m™d, (@, U)

and the conclusion follows.

Thus we have proved our theorem in the case where ¢ has one elementary

periodic orbit in U. Therefore, using the additivity of the S'-degree and the
definition of the Fuller index completes the proof.

Note that from Theorem 8.1 we see at once that the Fuller index may be

defined in terms of the S*-degree. The crucial step made by Fuller in [11] was
to prove the homotopy invariance of ir(¢, U); using the S!-degree one can
obtain an independent proof of this property.
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