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Certain subclasses of the class of typically real functions

by KRYSTYNA SKALSKA (Lédz)

Abstract. In the paper new functions classes 7,, a > 0, are introduced and ex--
amined. Each T;, a> 0, is a subclass of the family of functions regular in the disec-
K = {2: |¢| < 1}. T, is precisely the class of typically real functions and T, is the
class of functions convex in the direction of the imaginary axis, with real coefficients.

For functions of class T,, a > 0, a structural formula and an estimation of the
coefficients are found. Also the region of values of the system of n-Taylor coeffi-
cients of class 7', is described.

Introduction. Let H denote the class of functions of the form:
(1) f2) = 2+ ag2° + ...

regular in the dise K = {2: |2| < 1}.

Denote by C « H the class of functions univalent in K and convex
in the direction of the imaginary axis meets the image by f of every circle
2] =7r,0<7r <1, at no more than two points.

Let T < H denote the class of typically real functions, i.e., functions
of form (1) taking on real values f(2) if and only of z is real.

The class C has been introduced by M. S. Robertson [11] in 1936;
the research work connected with the class 7 has been initiated in 1932
by W. Rogosinski [12].

In 1969 P. T. Mocanu [9] defined the classes M,,0< a<1, of a-
starlike functions which are a “combination” of the well-known classes
of starlike and convex functions.

Z. J. Jakubowski, using the properties of the class T of typically real
functions as well as the properties of the family C of functions convex
in the direction of the imaginary axis, with real coefficients, suggested
analogous research to be done in the classes T and C.

In the present paper we introduce and examine & new family of
classes T,, a >0, such that Ty = T and T, = C. We find a structural
formula, an estimation of coefficients and the region of values of the sys-
tem of n-Taylor coefficients of & function of class 7.
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1. Let H < H be the class of functions with real coefficients, i.e.,

such that f™(0)eR,n = 2,3, ..., where R is the set of real numbers.
Denote by C = C the class funetions univalent in K and convex
in the direction of the imaginary axis, with real coefficients.
The following facts are classical:

LeMMA A. If f € C, then f is real only on the real axis.

LemmA B. A function f is in C if and only if f™(0)e R, n =2, 3, ...,
and ‘

(2) re{(1—2*)f'(2)}>0, =zekK.
THEOREM A [11]. If f € C, then

(3) la,| <1, =n =2,3,...
Equality in (3) takes place if and only if

i (z) =

= 1 * = .
1= ¢-Fh @ =375

Moreover, it has been shown [8] that then

2
-1<a,,<1, —1+n——<a <1

the estimations being sharp.

Now consider the class T of typically real functions of form (1).
The definition of this class is often given in the following form:
Let T < H denote the class of functions satisfying the condition

imz-imf(2) >0, 2z #2z,zekK.

The following lemmas are well known:
Lemma C. If feT,then f™(0)eR,n =2,3, ...
LemMA D. If feT,then f(2) = f(2),2€ K.

LEMMA E. A function f is in T if and only if f™(0)eR,n =2,3, ...
and

{4) r0{1_-Z2f(z)}>0, ze K.

k4
LevMA F. If f €0, then 2f' (z) e T.
Denote by B[a, b] the family of functions g defined in the interval
b
[a, b], non-decreasing and normalized by the condition [ dg(t) = 1.

Observe that the family B[a, b] is the set of probability measures
on the segment [a, b], [13].
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TeEOREM B [5]. A function f belongs to T if and only if there exists
a feB[—1,1] such that

1
2
f(2) =_—!mdﬂ(t)’ ze K.

THEOREM C [12). If fe T, then
{5) o, <ny, n»=2,3,...
Equality in (5) takes place if and only if

* _ 2 _
(6) I@ =g =&l

Moreover, it has been shown [8] that the sharp estimations

{7) -1<a,<1, 1-2n<ay,<2n+1, =»n=1,2,..,
hold.
Observe also the following properties of the classes considered

CcS8cT<HCcH,

where S « H is a subclass of the class of univalent functions.

2. Basing on the definition and the properties of the classes C and
T, we introduce the following function classes.

DeFINITION. Let T, < H,a> 0, denote the class of functions sat-
isfying the condition

1—22

{(8) re{(lua) f(z)+a(1—zz)f’(z)} >0, =zeK.

Condition (8) is equivalent to the condition

T@ | ofrz) = 2B

2 1—22’

(1—a) ze K,

where p € p (g denoting the class of Carathéodory functions [3]) and

p™0)eR,n =1,2,..., and also to the condition
9) azf’(2)+(1—a)f(z) = F(2), ze€K,
where FeT.

Directly from the definitions of the class 7', and from (2), (4) we get

T,=T, T,=C.
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We shall prove
THEOREM 1. If feT,, a> 0, then

1 -2 Foal
(10) fey==# [ T*RQ)E, =<K,
0
e I J (T
(11) fle) = —= fc P, ek,
a ; 1-¢
where FeT,pep,p™0)eR,n =1,2,... The converse is also true.

Proof. If feT,, a > 0, then some function ¥ e T satisfies condition
(9). By theorems [6] asserting to the existence of solutions of a differential
equation in the set of complex funetions equation (9) has a solution.
It is easily verified that the following function satisfies that equation

N S-SR | 1
o == [ R at e,
a 0

for 2z € A\(—1, 0>, C;, — const. If follows from the norming conditions
for functions f € T that C;, = 0.

Since f admits extension on to whole disc K, it follows that every
function f belonging to the family T, is of form (10).

Conversely, observe that for every function F €T the function (10)
1

is regular in K (we choose this particular branch of the power { “a which
for 0 < { <1 attains main values) and it satisfies equation (9). Thus
fel,.

In an analogous way we prove relation (11).

Formulae (10) and (11) can be expressed in the form

} 1
(12) flz) = ift_“;ﬁ’(zt)dt, ze K,
a 0
1 1
, 1 1) pat)
(12) f(2) =;oft %??—dt, zeK.

From the equality 7, = T, the integral representation (12) and
the definition of the class T we get

THEOREM 2. For an arbitrary a > 0
(13) T,<T.

Moreover, the following theorem holds
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THEOREM 3. If 0 < o, < a,, then
T,,2 c Tﬂx'
Proof. In the cases: a, = @,,a; = 0 and a, > 0 the theorem is
true.

Suppose that there exist number a,, a,, 0 < a; < @, and a function
feT,, such that f¢ T, . It follows from (10) that for certain { e K

re{(l—al) 1—(:: f(C)+al(1-—C2)f’(C)}< 0
holds.
By assumption
1—C2 2\ £7
re {(1—a2) IO+ e~ (c)} > 0.
Thus
re{(al—az) 125 f(c)}> 0.

2
CC f (C)} < 0, which contradicts (13)

Since a;—a, < 0, we have re{

and (4).

COROLLARY 1. For every a>1, T, c C.

CoROLLARY 2. The functions f belonging to T,, a>1, are univalent
tn the disc K.

Next we shall give some examples of functions illustrating relations
between the classes examined. To this end let us denote

2

C ) +al—2)f(2), zeK.

I(a,2,f) = (1—a)

ExAMPLE 1. Consider the function defined by the formula
fi(2) =2, zeK.
Since I(a, 2, f,) = 1 for every z € K, we see that f, € T, for every a > 0.
EXAMPLE 2. The function defined by the formula

f2(2) =
belongs to T'. Let a > 0; then

1-— 1—2\2
Ia,% o) = (1~a) 3 +a(1+:) -

Since lim re{I(a, 2, f,)} = —a, we see that f, ¢ T,, a > 0. Thus the fam-

ily T is in fact wider than any class T,, a > 0.

P
T eK,
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ExAMPLE 3. The function defined by the formula

2
142’

belongs to the class C. Let a > 1; then

fa(2) = ze K,

Ia, 5, ) = (1—a)(1—2) +a .

Since limre{z(a,z,f;)} =1—a <0, we see that f, ¢ T,, a > 1. Thus the

o+>—1

family C is in fact wider than any class T',, a > 1.

3. Now we prove a structural formula for the class 7',.

THEOREM 4. A function feT,, a > 0 if and only if there exists a f €
B [—1, 1] such that

1 p -'2+§ 2t
(14) f(z) = f[:aft AT AR dt] dg(r), =zekK.

-1

Proof. Take any function feT,, a > 0, and consider relation (12).
Since the function F'(z?) satisfies the assumptions of Theorem B, then for

every function feT,, a > 0, there exists a function g e B[—1, 1] such
that

1 241 ! 2t
f(2) =—t +[f TR dt] d(z), zeK.
-1

By the Fubini theorem on the change of succession of integrating

in a double Stieltjes integral, we get the assertion of the theorem.
Algo the converse is valid.

COROLLARY 3. The class T, is compact, connected an convew.
This follows e.g. from the general theorems concerning classes of

functions which can be represented by an integral formula ([5], [12]).
The following theorem follows directly from the definition of the
clags T',, a > 0, equation (9) and estimation (5) in Theorem C
THEOREM 5. If feT,, a> 0, then

(15) la,] < n=1,2,...

n
1+a(n—1)’

The estimation is sharp. Equality holds if and only if

1 1
1) f@=s6(5 210 e), o= £la> 0,568,
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where

_[' 1
(17) G(a,b,c;z2) = F(a)]’f(oc)—a) ft"“(l —)°7 " (1 —2t) P dt
0

I'(c) SF(a+k)F(b+k) &

TTOT®) & Tetk) kD

I'(z) is the Euler gamma function, rea > 0,re(c—a)> 0,reb > 0.

Proof. Let a function f of form (1) be an arbitrary functions of the:
family 7T';, a > 0. From differential equation (9) we obtain

<) bn i
f(z)=z+’;m21 ZEK,

where b,,n = 2,3, ... are the coefficients of the expansion of the rel-
evant function ¥ € T'. Thus

b
(18) a = n=2,3,...

"T1fam—1)’

Hence by (5), (15) follows.

Since in estimation (5) equality holds only for function (6), then,
in view of (12), equality in (15) holds for the function

1 1
1 p —241
FM0) =-;ft ea(l—a)tdt, &= 41, zcK.
1}

According to notation (17), the sharpness of estimation is realized by
function (16).

Thus Theorem 5 is a natural generalization of the classical results:
of W. Rogosinski [12] (a = 0) and M. S. Robertson [11] (@ = 1).

On the other hand we hand obtained another proof of the fact that,
for every function F €T, the particular solution f(z) (f(0) =0, f'(0)
= 1) of differential equation (9) is a regular function in the disc K.

It also follows from estimation (15) that the “limiting” family T, is
reduced to the identity function.

Moreover, from (7) and from relation (18) we get sharp estimations
in the eclass T,, a > 0,

2n <a 2n
14+a@n—1) = ™

ST o 1y
14a(2n—-1)
1—2n 14+2n

Thone SO STone "L
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4. We shall determine next the region of values of the system of

.coefficients of functions of class T,.
COonsider the function

F(z, 1) =2/(1—212+2%), —1<t<1,z2¢ekK.
‘Observe that

z2[(1+2)2 for r = -1,
€19) F(z,7) =32/(1—2tz+2%) for -1 <1<1,
2]/(1—2)*? for r =1,

18 a regular function in K. Thus

F(2,7) =2+ ) b(n)e", 2eK, -1<1<1,
n=2

‘where
(=1)"*n  for T = —1,
sin . :
b (z) = {279 for —1<t<1, 6 =z+iV1_12,
sing
n for r =1,
“n =2,3, sas

Let f(2, ) denote the function

1 f 242
iz, 7) =—ft “P(at,7)dl, a>0,zckK,
a
0

where F(z, t) is the function given by formula (19).

Thus the function f(2, ) possesses the following properties:

2eK,a>0, -1 < 7v<1; then
(a) f(=, ) is regular in K;
(b) f(z, 7) = f(2, 1);
(¢) If & = v+iV1—12, then, for 7.% +1,

f(z, 7) =‘£G(lrlal+i9z‘5)_ zE—G(—l"lyl‘FiazE);
§—& \a a E—E \a a

(@)If £ =¢%,0<p<m,a>0, then

fEn =)

k=0
() f™(0,7)eR, n =0,1,2,...;
(f) f(2,7) eT.

1 sin(k+1)g
1+ka ging

+1,
£t

Let
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Thus from Theorem 4 we get

149

THEOREM 6. A function feT,, a >0, if and only if there exists B e

B[ —1,1], such that
(20)

where for —1 << <1
1

f2) = [f(z, 7)dB(z

)s zeK,

! ft_H% d it for a>0
— . or a
a 1272+ 2% ’
(I) flz,z) ={ ¢
z
1212422 Jor a =0;
or for a> 0
)  f(z,7)
1 1
zG(—,2,1+—;—z) for v=-1,
a a
2L 1 1 zE 1 1
1 1
zG(—,2,1-|——;z) for T =1;
a a
or
O (—1F(k+1)
_—2 for p ==,
’.:_20 1+ka
1 sin(k+1l)p B4
(1)  f(z,7) = ',‘A_-S';l-{—ka G2 fr0<p<r,
LR
—2 for @ =0,
{k:o 1+ka
Put forn =2,3,... and a> 0
(—1)"n
Ra— for T = —1,
21 a 1 sinng for —1 1
1) () =V T am—1) sing —r<r<h
n
m for T =1.

4 — Annales Polonict Mathematlel XXXVIIL2
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Then formula (20) implies the following
THEOREM 7. If feT,,a> 0, then for n = 2,3, ...

a, = [ a(v)@p(v),
where f € B[ —1,1] and a,(7) are defined by formulae (21).

Let V,(a),n > 2, a > 0, denote the region of values of the system
(ay, @4y ..., a,) of coefficients of the Taylor expansion (1) of functions
of class T,.

By Carathéodory’s theorem [7] and by Theorem 7 we have

THEOREM 8. If feT,, a> 0, the region of values V_(a) i8 the convex

hull of the (n—1)-dimensional real space (wy, ..., ®,_,), where for € = v+
+1¥V1—1?
(=1)*k for _
1ta(k—1) ="
1 sin kg
Wy = Tra(k—i) sing for 0 <op<m,
k
Tha(e—1) for —#=0,
k=2,3,...,n.

COROLLARY 4. In the case n = 3 the region of values Vy(a) 18 the con-
vex hull of the curve whose equation is

_fat+1) , 1 2 2

— — <A, << .
%= e+l 2 211’ a+1 2 a1

In the case n = 4, V,(a) is the convexr hull of a the curve with the
equation

o (afD@atl) el
“ 3a+1 2 8at1 ¥
(@+1) , 1 2 2
_ — _ <a,< :
8= Patl 2 2a+41’ atl ST

Remark. Theorem 8 is a generalization of an analogous theorems
in the classes 7 and C.

5. The results of [1] and Theorem 4 yield

THEOREM 9. If f € T%, a = 0, then the region of values of the evaluation
Sunctional

(22) F(f) = f(2), =2isa fived point of K,
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18 a convex hull of the curve with the equation
o = f(z, 7), -l<7<1,

where f(z, 7) i8 of form (I) [(II) or (III)].
Remark. Let us denote

i 1 1 1 1
-1
r ft—1+;1 1 z+—2-—21 it
¢ = Zasiny rE—1 1 ‘
0 z-{—; 27

It appears that the region of values of the functional (22) is included in
that section of the disec K (C,, o) determined by the chord AB with A

1 1 1 1
=(zG(;,2,1+;;z)) and B = (zG(E,2,1+—; —z)) which contains
a

the centre of the disc.

In the case a = 1 we get the region of values of functional (22) in
the class C.

6. Finally we show that the following theorem is true

THEOREM 10. If feT,, a > 0, then

1° ¢coT, = T,
where co A stands for the closure of the convex hull of the set 4 ;

2° In the integral representation (14) or (20) of a function of this class
the probability measure f € B[ —1,1] 18 uniquely determined;

3° The set of extreme points of this class is the set of funotions of the
form

Er, ={f(2,7): -1<7<1, ze K},

where f(z, t) 18 given by formula (I).

Proof. 1° follows from the convexity of the class and from the defi-
nition of the convex hull.

The second property is a consequence of the uniqueness of the
measure 8 in the integral representation in class 7' [13].

3° follows from Brickman’s theorem [2] and from Theorem 6.

Theorem 10, especially 3° gives a possibility of examining real func-
tionals on the class 7',. It is a generalization of the analogous topics
considered in the classes 7 and C.
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