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This paper deals with a system of non-linear parabolic operators
of form (1) below. We prove, in Section 2, comparison theorems, of dif-
ferential inequalities type, and uniqueness criterions in arbitrary domains
under general assumptions resembling those made by M. Picone [4],
[5] for a linear equation. Our theorems do not require any assumptions
concerning the boundedness of the domain and, moreover, they include
a considerable wider class of non-linear operators and give a better re-
lation between the non-linearity and the growth of the solutions at infinity.
In Section 3 we insert several consequences containing specific assumptions
on the situation of the domain, on given functions f* occurring in (1)
and on the growth of the solutions. For example, as one of the corollaries
we obtain a differential inequalities result, in an unbounded domain, under
the assumption that functions f*(¢, «, 2, ¢, r) are Hoélder continuous in
7, ¢ and Lipschitz continuous in 2, the solutions in question belonging
to a suitably chosen class of fast increasing functions, whereas theorems
of this kind known in the literature (see e.g. [1]1-[3], [9], [11]) contain
the Lipschitz conditions with respect to all the variables z, q, r.

1. Notation and definitions. Let D be an arbitrary domain of the
(n+1)-dimensional space R**' of points (f, z) = (¢, 2y, ..., 2,), contained
in the strip To<t< T. We allow T = 400, Ty = —o0. Let I' be that
part of the boundary ¢D of D which does not contain points lying on the
plane t =T if T< 400, ' = 0D if T = + o0, and I' =0 if D = R"*',

We shall treat the system of operators

(1) F¥u) = fe(t, w,u, vk, uk)—uf (& =1,...,N),

where w = (u?, ..., w"), ug = (ug, ..., uy ) and ug; is the matrix (uﬁizj)ﬁ,-,l.
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A function % (¢, ) will be said to be regular in an open set Q2 if it is
continuous in the closure £ and has continuous derivatives u,, u,, %,,
in Q.

Throughout the paper we assume (without repetition) that the func-
tions f*(¢, 2, 2, q, r) are defined for (¢, x) € D, arbitrary z = (2%, ..., 2Y),
g = (q1y +++y @)y T = (r;;) and each f* is non-decreasing in 27, j # k.

An operator F* of form (1) will be called parabolic in a set 2 with
respect to a vector-function # = (!, ..., ") with the regular component
»* in Q, if for any symmetric matrix » and (¢, #) e 2 we have (cf. [9])

fk{t7 z, u(t, x), uﬁ(t, z), '”’I::z(ta m)"‘r) -
>0 ifr>0
_ k Z
f(t @, u(t, o), uz(t, ), )) { if r<0,

where inequality r > 0 (r < 0) means that the quadratic form with the
matrix r is semi-definite positive (negative).
Let Q, = (llzl < ¢)n(—o< i< T), where |z| = Z.'v P2, 9> 0.

i=1
‘We define C to be the closure of the union of the side surface and the

base of the cylmder Qo, and we set C, = Dn(C,,.

2. Comparison theorems.

THEOREM 1. Let u = (v, ..., %"), v = (v, ...,0Y) be continuous
vector-functions in D, u <o (1) on I'. Assume that there exists a wector-
Sunction

h(t,w; &) = (k'(t, z; &), ..., BV (1, 2; &)): Dx(0,g)—~>RY, £>0,

with continuous and positive components in this set, having continuous
derivatives hyy hyy b,y b, in D x (0, &), b, > 0, such that h -0 as ¢ -0,
uniformly with respect to (1, x) in bounded subsets of D and that for any
fized &€ (0, &) we have

uk — ok
(@) llmmf{sup - }<1(2) k=1,...,N).

e—>00 C

e

Let
Q' = {(t, z) e D: w(t, x) > V' (t, z)}.

We assume that for every fized k and ¢ € (0, &), in the set QF the components

u®, o* are regular and either

(!) Inequality between vectors is meant as the simultaneous inequalities between
the components.

(%) If for some g the set O, is void, then we set sup f = 0. Thus if D is bounded,
(2) is automatically satisfied. G
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(a) F*(u) = F*(v+h) and F* is parabolic with respect to w or v+ h,
or

(b) F¥(u—h) > F¥(v) and F* is parabolic with respect to w—h or v.

Under these assumptions we have uw < v in D.

Proof. We confine ourselves to the proof in ease (a) with F* parabolic

with respect to w. Let (f, ) be fixed and ¢ e (0, ¢,/4). By (2) there is
o > ||IZ + || such that

(3) u(t, ) —o(t, x) —h(t, x; &)< 0 for (t,2)eC,.
We define 6(f) = 3-+(2/x)arctant and
(4) wk(t, 2) = uF(t, 2) —v* (1, ) — KL, z; €0(D)).

Since #*(t, x; 6(t)) > h*(t, @; ¢), we have w* < 0 on C, . Conscquently
w*<0 (k=1,...,N) on the whole part of the boundary of D,
:=DnQ,,, where t < T. We shall show that these inequalities hold in
D,,. Suppose the contrary. Then there would exist an index k, and a point
(1, 2°) € Q"0 @, such that

(5) whk(t®, 2%) =0, w*{’, 2" <0, wr(t,z)<0

for (&, ®) e D,y N[— oy ') (k =1, ..., N).
This implies

(6) wh(t’, 2" =0, wh(t’,a") <0, wht,a’)>0.
Since

0
2 WE(t, =5 €0(1)) > hi(t, z; £0(2)),

it follows that
(7) ufo (10, 4°) —vfo (10, x°) —hfo (1, 2% &) > 0,

where & = ef(t°) € (0, &) . On the other hand, by inequality (a) with ¢
replaced by &, the left-hand side of (7) is less than or equal to

k k k k k k k
(8) {f O(to’ m07 u) ""307 uzg) _f D(toy a701 U, uzo’ uzg—wzg)} +
+{ffo(t°, 2°, u, uko, uko —wko) —fFo(i0, 2°, v+ h, vko4-nko, vEo + BEO)}.

Now, the difference in the first bracket in (8) is, by (6) and the parabolicity,
non-positive. By (4)—(6) and the monotonicity of f%, the difference in
the second bracket is non-positive also. This contradiction shows that
w*< 0 in D, and, in particular, at (¢, %) (k =1,..., N). Notice that,
by (2), for & < ¢ one can always find g, > ¢, such that (3) holds for
(¢, #) € Cpy . Repeating the above argument we deduce that w* defined
by (4) with & substituted by &’ is also negative at (¢, ). Thus letting
& —0 we obtain u* <<o* at (£, %) and the proof is complete.
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For a vector a = (a,,...,a,) we shall write |a| := (|a,], ..., |a,])-
Similar notation will be used for matrices. Let

(9) G* (k) := g*(t, @, hy BZ], [hE)) — (k=1,...,N),

where ¢*(t,,z,q,r) are functions defined for (¢,z)e D, vectors z
= (2%, ...,2"M) >0, ¢ = (1, ..., 4,) >0 and matrices r = (r;)7;_, with
non-negative elements.

The following theorem is a consequence of Theorem 1.

THEOREM 2. Let u,v be regular vector-functions such that u <v on
I' and F*¥(u) > F*(v)in D (k =1, ..., N). Each F* is assumed to be parabolic
with respect to u or v in D. Suppose that f* satisfy the inequalities
10) [f*(t,x,2,q,7) —f*(t, =, 2, g, ¥)]sgn (¥ —z%)

< g (t, @, 22|, lg—ql, Ir—F)) (k=1,...,N).

Moreover, we assume that there is a vector-function h(t, x; €) of the same
property as in Theorem 1 such that for any fixed e € (0, &)
(11) G*hy<0 in D(k=1,...,N)

and (2) is satisfied. Then u < v in D.
Proof. It is easily seen that

F¥(u)—F*(v4-h) > F*(v) —F“(v+h) > —G*(h) = 0

Thus if F* is parabolic with respect to u, all the assumptions of Theorem

1 in case (a) are satisfied. If F* is parabolic with respect to » the proof
is similarly reduced to case (b) of Theorem 1.

The following two theorems deal with the uniqueness of solutions
of the problem:

(12) Fu) =0 inD((k=1,....N), au(t,x)=mwp(t,z) on T,

v being a given continuous vector-function.

THEOREM 3. Let w be a reqular solution of (12). Assume that there
exist two vector-functions h(t, z; €), h(t, x; ), having the same properties
as function b in Theorem 1, such that for any fized ¢ € (0, &,) we have

. iR
13 1 sup——————=—, =0 k=1,..., N
1s) imfa e ] =0 =L

as well as

(14) e, 2y uthy wk 4 nE, k4 RE) —fF (8, 2, u, uk, wE) < B}
and

(5) St @y, wl) 4 @y =Ry =BG, uk — ) <Ry
(k =1,...,N), (t,x)eD. If, moreover, operators F* are parabolic in I
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with respeot to each solution of (12), then u(t, x) i8 the only solution in the
class of all these functions w that satisfy condition (13).

Proof. Let v be another solution of (12), satisfying (13). By (12),
system (14) is equivalent to F*(u+%)<0 (k =1,...,N). Since F*(v)
= 0, case (a) of Theorem 1 (with u, v interchanged) implies v <<% in D.
Similarly, applying case (b) of Theorem 1 we get u<v. m

THEOREM 4. Let u, v be regular solutions of (12) and let F* be parabolic
with respect to u or v in D. Suppose functions f*(t, z, 2, q,r) satisfy in-
equalities (10). Now we assume that each f* or each ¢* is non-decreasing
in 27, j % k. Further we assume that there exists a vector-function h(t, z; &),
with the same properties as in Theorem 1, such that for any fized ¢ € (0, &),

k k
e |u” — 0%
liminf { sup-—-—

h
e—>00 C'Q

and (11) s satisfied. Then w = v in D.

This theorem, in the case where the functions f* satisfy the monot-
onicity condition, follows immediatelly from Theorem 2. In the case where
the functions ¢* satisfy this condition the argument is similar to that

used in the proof of Theorem 1. The reasoning concerning w* defined by
(4) is now carried over in respect to the functions

}<1_

wh(t, ) L Uk (1, 1) — ok (t, )| —hH(t, @5 £6(1)).

We omit the details.

Remark 1. If in assumptions (a) and (b) of Theorem 1 the weak
inequality sign “>” is replaced by strong one “>”, then the requirement
that ¥ > 0 and that the derivative exists is superfluous. This can be
shown by taking 6(t) = 1 and repeating the argument (now simplified)
given in the proof of Theorem 1. Similar observations concern Theorems
2-4. In particular, replacing in (11) the sign “<” by “<”, one can omit
in Theorems 2 and 4 the assumption that k¥ > 0 and even that the deriva-
tive exists.

Remark 2. If the function % occurring in our theorems does not exist
in the whole domain D, however, the interval (T, T) can be divided
into a countable set of intervals (T, t,), ..., () ts1)s .- sSuch that for
any set Dn(t,, t, ;) there is a function k,, possessing required properties,

then, evidently, the agsertions of the theorems remain valid for the whole
domain D.

3. Consequences. Now we discuss some consequences of the previ-
ous theorems. For the time being we assume 7', > —oo but we do not
assume that D is spatially bounded.



10 P. Besala

We say that 4 = (u!, ..., u") belongs to the class E if for any 6 > 0,
(16) liminf{w*(t, z)exp(—d||?)} <0 (k=1,...,N)
llzl|—>c0

uniformly in ¢, while we say u € K if there is integer p > 0 such that
w*<eyal) inD((k=1,..,N),
where ¢,(s) is the function defined as follows
e(8) =€, e,(s) =ele,_,(5)) forrv>=2,s>0.

Notice that the class K does not include all the functions defined
in D. For instance the function 4: D — R' such that u(?, #)y—, = €,(p)
for p =1,2,... does not belong to K.

PROPOSITION 1. Let u, v be vector-functions regular in D (T,> — ),
satisfying: u<v on I'y F¥(u) > F*w) in D (k =1,...,N) and u—v e E.
Let operators F* be parabolic with respect to w or v. Moreover, we assume
that f* satisfy (10) with

(a7 gty @, 2, ¢, 1) = 4 D) max(lryl*, Iryl)+

3,j=1

n N
+B ) max(lg;l° )+ D CF I,
i=1 =1
Jor some constants A, B, C¥, 0<a< 1. Then u<v in D.
Proof. Let us write h* = ¢h, where

h = exp{(1+0)(all>+1)+(C+1)}, 0<e<1/2,

C = max D CF and 7 is a positive constant to be determined later on.
E I=1

Since w —v € E, (2) holds true. It suffices to show (11) with ¢* defined
by (17) and to apply Theorem 2. We have

5| = &+ TR(1+1)2 2] < &R (L+T) ("l + 1)
Similarly
oy < 46"+ 7R(1+T) ("]l 4 1).

Hence one easily derives
G*(h) < R¥{(e"lal|2 +-1) [n2 A (1 4+ T)223 -0+ Ly B(1 + T)2'~0+72e 171},

Now it is seen that taking # large enough implies (11).

The result stated in Proposition 1 is known in the literature in the
case where the functions f* satisfy the Lipschitz condition (i.e. a = 1).
In this case the class F can be extended by requiring (16) to hold only

for large 6 [1], [9], [11]. Choosing suitable %, one can easily show that
the latter case is also contained in Thcorem 2.
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is non-empty. Let h = gk, ¢ > 0. In Q* we obtain L*(|u|) > F*(u)sgnu*
= 0> L*(k). Applying Theorem 1 with F*, u, v, b substituted by L%,
jul, 0, b respectively, we deduce [u|<0 in D.

In the case N =1, T,> —oo Proposition 4 was established by
M. Picone [4], [5]. Functions k(t, ) satisfying inequalities of type L*(h)
< 0 depend on the growth of the coefficients as ||2]| — oo and have been
constructed for various purposes in the literature (see e.g. [2], [4], [8]).

As a final example illustrating the applicability of Theorem 1 we
prove a maximum principle for a special strongly non-linear equation
of the form

(20) F(u) = Z i U " 8GN g+ 2 b lug, i+ cu —u, = 0.

t,5=1

Let D be an unbounded domain contained in a strip 0 < t < T (< o0).
We assume that ¢; > 1, 8, > 0 are constants and each a;;, ¢ # j, is the
harmonic mean of q; and ajj, 1.e.

(21) Ay = ) ]]/( n+ajj)

(This is automatically satisfied if, e.g., a; = 0 for 7 #j.) Moreover,

we assume that functions a;, b; are bounded and ¢< 0 in D as well as

n
(22) 2 aga;> ) layley (G =1,...,m).

Jj=Lj#t
Let us denote by @ the class of all functions w such that

(23) lim inf sup —n"’(t—w)]

i=1

<0,

where A; = min[a;/(a; —1), B;/2(8; —1)] for these j for which a;>1
and B; > 1; 4, = ay;/(ay, —1) for these k for which o, > 1 and g, <1;
A = B,/2(8;—1) for such 7 that a; = 1, §,> 1; while 4, is any number,
say > 1/2, for m such that e, =1, , <1. Thus-in each case 1, > 1/2
and depends on the non-linearity.

Let # be a regular solution to (20), such that ue@ and v < M
=congt >0 on I'. Then u < M in D.

To prove this fact we use Theorem 1 with N =1, v = M. We choose

n

h(t, @3 &) = s(1—pt)™" D ("al+1)%, 2€(0,1),
f==1

where

n = max{max[2(1—B)/f;, 01}, > Amax((84)%]+ Bmax[(44)"],
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A = 2 a;, B = Zlbl We first show that F(M+h)< 0 in D,
= Dn(0< t< (2y 1) Indeed, we have
[ 1P < e8P (40,)P0 (e70F + 1) 0710 L o (42,0 (70} + 1),
Similarly
gz, < [1F 7823 (727 4 1)1 ] < 8(87) (7} + 1)

Further, by, = 0 for « # j. Hence one obtalns F(M4h)<0. It is easily
seen that, by (23), condition (2) with «* = u, v* = M, * = } is satisfied
too.

In order to prove the parabolicity of ¥ with respect to M 4% let
us note first that if a matrix » = (»;) is semi-definite positive or negative,
then 7}; <r;r;. Hence, by (21) and Young inequality,

(24) 7149 < |yl ey (@ + o) + |71 g /(@ 4 ay;)
Therefore, if » > 0,

n

(25) g(r):= D aglr,sgnr, >Z[ 2 2]

t,j=1 J=1,j#¢

] Irs 1%,

and, by (22), ¢(r)> 0. Similarly » < 0 = ¢(r) < 0. Now let

¢(T)2 = 2 A (]Tii + hzizi]aii Sgn (/rii + z; :,) ]hz ;T4 I Sgn ha: ;5 ) +
i=1

+ 2 a; |ry;*isgnr,; .
4,j=1,i#]
We have to show that »>0=> @(r) >0 and r << 0= @(r) < 0. Note
that h;, > 0. In case r >0 we apply the inequality (a+b)” > a”+b?
(a=0, b >0, p > 1) which implies @(r) > ¢(r) > 0. If r < 0 we consider
two cases: —h,, <r;<O0 and r; < —h, . In the first case we make
use of the inequality (a —b)” < a? —b? (a> b>0, p>1), whence

750 heyg, |8 < — Iry|™+ R

Thus we obtain @ (r) < ¢(r) < 0. In the second case, we use the inequality
(@ —b)? = 2"PaP —b* (a> b>0, p>1) and similarly derive &(r) <0.
Thus the proof for domain D, is complete. For domain D it follows
from Remark 2.

Similarly one can prove the minimum prineciple.

In cases a;<1, §; <1 one can use Propositions 1 or 2 and prove
the maximum-minimum principle and the uniqueness for solutions of
(20) belonging to the corresponding classes E or K. Now the factor
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2'~% in (22) should be omitted. If every a;; = a = const > 0, then,
instead of (22), the following less restrictive condition can be assumed:

n

n
NaEg>0-29 Na,&, EcR", a=max(a,1).
t=1

1,5=1

The maximum principle itself, in unbounded domains, for strongly
non-linear differential and differential-functional inequalities of parabolic
type has been investigated extensively by R. Redheffer and W. Walter
in papers [6], [7]. However, their results are concerned with bounded
or slowly growing solutions and do not contain the examples given above.
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