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Remarks on algebraic concomitants
of the Riemann—Christoffel curvature tensor
in a three-dimensional space

by S. TorA (Krakdw)

Introduction. In the paper [1] the problem of determination of all
regular algebraic concomitants which are densities in the sense of Weyl,
of the Riemann-Christoffel curvature tensor in a three-dimensional spa-
ce has been solved. The authors apply a method of differential equations.

In the present note we show how one can solve this problem by
a tensorial method which does not require any assumptions of regularity
of the unknown function.

I express my deep gratitude to Professor Zajtz for his valuable
advice in the preparation of this note.
Let R, be a Riemann-Christoffel curvature tensor of type (0 4)

in a three-dimensional Riemannian (or pseudo-Riemannian) space V.
It fulfils the identities

1 R..,. = R,,.:
( ) i, kl kL35 ’I:,j, k,l =1’2’3
(2) 'R'iy',kl = _Rji,kh
and the first Bianchi identity
Rjm = 0,

which in our case of the three-dimensional space V,, as is well known,
is a simple consequence of (1) and (2). So (1) and (2) are the only symmetry
properties of R ;.

Let &7, ¢ be the Ricei symbols in V, which are tensor densities
of weights —1 and 1 respectively. We have

k ik
(3) e Empqg = E;,q,

where &% is the alternating operator equal to &Y 6%, Let us put

(4) B Z Ry pocMeme,
Conversely in view of (3) and (1), (2) we obtain
(5) Ri;i,kl = i‘RmEpﬁqul'
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R¥ iy a tensor density of type (2, 0) and of weight —2 submitted
to the transformation rule

(6) R — J*AY ATRY,
By (1) and (4) we have
R = R,

(5) shows that the correspondence (4) between R;; ;, and RY is 1—1
and invariant. Thus, these two geometric objects are equivalent in the
sense of Wagner or Golab. Consequently, the problem of determination
of algebraic concomitants of R, is equivalent to that for RY. For
instance, if we are looking for all the concomitants of R;;, which are,
densities, we may compute them from RY and then, using relations (4),
represent them as functions of R ;.

In order to find a general form for the density concomitants o (of
a fixed type) of BY let us recall that if ¢(R”) + 0 is one, then any other
density concomitant y (of this type) is of the form

(3) x = p(Ra,

wherein ¢ is a scalar concomitant of R¥ (i.e. an absolute invariant of
the quantities RY) ().

By (6), any scalar concomitant of the symmetric tensor density RY
must fulfil the funetional equation

(8) p(J2AY AT RY) = p(RY)

for any matrix [4}] such that J = det(4}) # 0. In matrix notation (8)
takes the form

(9) ¢(JPARAT) = p(R); A =[4]], E = [E7],
AT — the transposed matrix 4.
Putting
B =JAT; detB =J*, A = (det B)"**BT
we get »
(10) ¢(B"EB) = p(R)

for any matrix B with a positive determinant (?). (10) may be treated as
an functional equation for the invariants of the quadratic form

(1) - RIEE;

() Because y/o is a scalar.
(?) The positiveness of det B does not influence the solutions of (10) because

(—BYTE(— B) = BTRB and if detB < 0, then det(— B)> 0.
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and the only solutions are functions of the rank r and the signature s
of this form, which we refer to the quantities RY.
Thus we have shown that

(12) p(BY) = f(r, s),

where f is an arbitrary function. If det R = 0, then » = 3 and r may be
omitted in (12).

Since the tensor R, ;; has an even number of indices, it cannot admit
any other types of density concomitants except the Weyl densities [4]

(13) o = |J|™¥o; w is the weight of o.

For such density concomitants o = o(R”) we get the following
matrix functional equation:

o(JPARAT) = |J|""c(R).
As before, this equation is equivalent to the following:
(14) o(BTRB) = |B|"""*¢(R).

It has been shown in [4] that equation of type (14) has no non-
vanishing solution if det B = 0 (3).
On the other hand, if detR # 0, then by (6) ¢ = det(RY) is a non-
vanishing Weyl density of weight —4, i.e.
det (R7') = |J|*det (RY).

Now we come to the conclusion that every density concomitants yx
of a weight w of R” is of the form

(15) x = f(s)|det(RY)|~¥",

where s is the signature of the form (11) and f an arbitrary function.
One can compute det(R”) in terms of R,;,;. We have

=it )
det (RY) = 3T Rl fpiada piafs ¢

iyigia &

J1i2d3
and in consequence, by using (3) and (4), we get
det(R7) = 3R, R R

EHRLU
Remark 1. Formula (15) provides the densities which are conco-
mitants of the tensor E;; ,, itself. But we may ask for densities as combined
concomitants of the pair

(16) {By, 115 93} »

(?) This is equivalent to the fact that a singular quadratic form (11) has no
relative invariant.

c1ial3 giiads ghikeky ghiols

izfz. k212 1373, k3l3
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g; being the metrie tensor in V;. Since each V, is (locally) conformally
an Euclidean one, we have

R 1
i, Kl . ( ikgﬂ ! ‘R]'lgik 'Rilgjk leikg'il)
n 2
(rn,_])(,n 2) jhkdil g]'lgik)7

where E;; is the Ricei tensor and K the scalar curvature, and consequently
the pair (16) is equivalent to the pair

(17) {Bij) 91}

(17) consists of two covariant symmetric tensors of type (0, 2) and
the algebraic concomitants (including densities) of such a pair have been
found in [4].

Remark 2. The quantities BY and R, are connected with each
other by the formula

— kp Plg
By = —teimeipg RO

Remark 3. By replacing each pair (4, j) of skew-symmetric indices
by one single index a such that (a, %, j) is an even permutation of (1, 2, 3)
we get from the essential components of R; ;; a 3 X3 matrix [R,] by
putting K., = R;; ;; (see [2], [3]). From (4) it follows that

[R7] = 4[R,],

which may be useful for computing det(R7).

Remark 4. The factor f(s) in (15) does not occur in the result obtained
in [1], because s is not a differentiable function of components E;; ;.

Remark 5. The above method of determining algebraic concomitants
of density type for E; ,; in a three-dimensional space V; may be applied,
after some modifications, to the problem of determining such concomitants
of a tensor

e 1o I1s e erdn—1? Uty vy b1y Jrsee s Jacr = 1y oy
for n odd, arbitrary and > 3 (%), which has the following symmetry prop-

erties
R.

jl...i,n_l, ’!:l,..., in—l

R[il, .

=R

il’---rin—l’ jla'--v fn—],’

= 0.

LR in— 1]y jln»--) jn—l

(*) In the case n = 3 no modifications are needed.
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