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On M. Kac’s probabilistic formula for the solution
of the telegraphist’s equation

by J. KisyNsk1 (Warszawa)

Abstract. A new, more direct proof is given of M. Kae's probabilistic formula
for the solution of the telegraphist’s equation, connected with a random walk on R!.

The solution of the Cauchy problem for the equation of a vibrating
string

22u(t, z) _ o2 02u(t, x)
ar az? ]

(t, z)e R?,
ou X
(0, ) = uy(2), W(oy z) = uy (), zeR,
is given by the d’Alembert formula
;
u(t, ®) = {ue(@+vt)+ up(@— 1))+ ful(m+'o-r)dr.
=t

An analogous formula for the solution of the Cauchy problem for
the telegraphist’s equation

2u(t, x) + % ou(t, x) - 0%u(t, )

o1 ot e CL L

(1)
u(0,2) = w(2), —(0,2) —u(a), ok,

is

t
(2) wu(t, ) =%~(% e ro(ail/tz—r"‘)uo(m+m)dt+
—t

H
+ie fIo(a'il/tz—-r“)ul(w—l—'v-r)dr],
o’
where ¢ is the imaginary unit and I, is the Bessel function of the first

kind and of the order zero (see Courant [1], Chapter VI, § 12, 6). M. Kac
[3] exhibited a connection betwen the telegraphist’s equation and a ran-
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dom walk on R' and proved that, for ¢ > 0, the first member of the right-
hand side of (2), which gives the solution of (1) for u, = 0, is equal to

¢
%Euo(mﬂ—'vf(—l)Na(')dt) +§Euo(w—'v f(-—l)”a(')dt),
0 0

where F stands for the mean value of a random variable and N,(¢), t > 0,
is the homogeneous Poisson stochastic process with the mean value
EN,(l) = at.

In the original proof of his formula M. Kac uses the Laplace transfor-
mation and in an ingenious manner performs calculations on characterictic
functions. Here we want to present a more direct proof of the Kac’s for-
mula, in a version extended to the full expression (2). Qur method will
employ the group-theoretical aspects of the formulas and therefore it
will be natural to use the language of the theory of one-parameter groups
and semigroups of linear operators.

1. A homogeneous Markov process with values in a non-commuta-
tive group. Let N,(f), t >0, be the homogeneous Poisson stochastic
process with the mean value EN,(t) = at, a = const > 0. This process
has independent increments and takes only the values 0,1, ... with the
probabilites
(at)" e

P(N,(t) =n) = oy

For any ¢ > 0 consider the stochastic variables
¢
(—1)M®  and  &(f) = [ (—1)NaOdr.
0

They have the following interpretation. Suppose that a point of R'
moves with velocity equal to 1 or —1, which changes at random in
such & manner that the numbér of changes through the time interval
from 0 to ¢ is N,(t). If at the moment ¢ = 0 the point is at the origin of R'
and has the velocity +1, then &,(f,) is its position at the moment ¢ = ¢,
and (—1)Mel0 jg its velocity at this moment. The natural phase space
for such a motion is the non-commutative group ¢ constituted by R'x
x {1, —1} under the multiplication rule of pairs

(&, k)(ﬂr'l) = (l&+n, k), 5!"75R]1 E,1 = £1.

Let g,, 1 > 0, be the stochastic process with values in ¥ defined by
the formula

g = (&0, (— 1)),
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For any non-negative ¢ and A we have

h
gt+hgt_1 — (f (—1)N““+')_N“md‘r, (_1)Na(‘+h)—Na(‘)),
0

from which we see that

10 the random variables g¢,.,g;' and g, are independént and that
2¢ the random variables g,,,9;" and g, have the same distribution.

This means that g,,7> 0, is a homogeneous Markov process with
values in the group ¥.

For any ¢ > 0 let u, be the probabilistic Borel measure on ¥ defined
by the formula

m(B) = P(g,eB),

where B is an arbitrary Borel subset of 4. The measures u, have compact
supports, namely

3) suppp, < {(§, k): 18| <, k= +1},
and we ha,ye
(4) po=e"" R T

where 9 ;, is the unit mass at the point (¢, 1)¢ ¢ and » is a non-negative
Borel measure on % such that

(5) [n(dg) = P(No(t)>1) = 1—¢.

v

Moreover, it follows from 1° and 2° that

(6) Myps = Mgk gy t,s>0,

where # denotes the convolution of measures on ¥ (see Grenander [2],
§ 2.2).

2. Perturbation of a one-parameter group of diagonal operators by
means of the process g,. Let G(&), —oo < £ < oo, be a one-parameter
. strongly continuous group of continuous linear automorphisms of & Banach
space E. Let v = const > 0 and let U be the representation of the group ¥
by continuous linear automorphisms of ¥ x E, defined by the formula

(G('UE)?”G(_"’S)V’) if k=1,
(G(_”E)V”G('UE)‘P) if k= -1,

where (&, k) and (¢, p)eFE x E. It follows from (3) that, for any ¢> 0,
the formula

U, k) (p,v) =

SWd = [U(gduldg), P<EXE,
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defines a continuous linear operator of K x E into itself. Moreover, from
the fact that U is a strongly continuous representation of ¢ and from
relations (3)—(6) it follows that S(¢),¢> 0, is a one-parameter strongly
continuous semi-group of operators in E x E. The crucial point in our
proof of M. Kac’s formula is the following

LEMMA 1. Let # be the infinitesimal generator of the group G (&) and
let D(R) be the domain of B. Let o/ be the infinitesimal generator of the sems-
group S(t) and let D(/) be the domain of <. Then

D(o) = D(B) x D(B)
and
(g, y) = (vBp+aly—9); —vBy+alp—y)
for any pair (¢, v)eD(A) x D(AB).

Proof. For any ¢t > 0 define the Borel measures u;* and u; on R’
by the formulas

(M (@) =wmlZ,1)—e8(2), w(2)=uwum(—2%,—1).
Then
(8) 8(t)(p,v) = e *(@(vt)p, G(—0t)y)+
+( f@@or @ul +yui)(@86), [G(—v8)(pui +our)(@8)),
Rl Rl

so that the lemma will follow if we show that

1
lim = | G(o8)puf (d8) =0
rl

t—+0

and

.1
lim = [ @(Lo08)pu (@) — ag
R!

t—>+0

in the sense of the norm topology in FE, for any pe<E. But the above two
relations follow from the fact that

i 2%
f,u;r(dE) =P(N,(t) =2,4,...) =% E;:)' =o(t) ast— 40,
Rl k=1 :
and
B _ _ oa mj (at)Zk—l _
R!m (@8) = PN = 1,8, = Y sy = at-+o()

as t—-+0.
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Lemma 1 is proved.
Let us represent the operators S(t), ¢ > 0, as the matrices

811(t) 81a(t

S(t) — ( 11 () Bra ))’
S2l(t) S2Z(t)

whose elements S;; are continuous linear operators of E into itself. Since

D() = D(%8) x D(A), the infinitesimal generator of the semigroup S(¢)
may also be represented in the ma,tricia,l_ form

VB —a a v4 0 —a a
o = - + )
( a —vﬂ—a) (0 —'093) ( a —a)
On the right-hand side of this formula the operator (”{? _(:’ g) y
defined on D(#) x D(4#), is the infinitesimal generator of the one-para-
meter strongly continuous group

Tety — G (vt) 0
”—( 0 G(—ut)

(9)

), teR,

a

of diagonal automorphisms of E x E, while (—;a ) is a contin-

uous linear operator of E x F into itself. Thus, by the Phillips pertur-
bation theorem (see [6]), & is the infinitesimal generator of a strongly
continuous one-parameter group of continuous linear automorphisms of
E x E. Therefore the semigroup S(t), t > 0, may be extended (of course
In a unique manner) to a one-parameter group. For the operators of this
group we shall preserve the symbols §(¢) and S;(t), but now ¢ may be.
an arbitrary real number.
Consider the operator-valued function
V() = ‘%(Su(t)+S12(t)+821(t)+822(t))’ teR.

From formulas (7), (8) and (9) we see that, for ¢ > 0, we have
Vitle =% f (6(v€) + G (—vé))gm,(dE), peE,
where, for any ¢ > 0, m, ?s the probabilistic Borel measure on R! defined by
(10) my(2) = p(Z x {1, —1})
for any Borel subset T of R!. In other words, for { > 0 we have
V(1) = B3{8 (v£,(1)) +6(—v&, (1)

An easy consequence of Lemma 1 is the following

LEMMA 2. Let D(#2) be the domain of the square B2 of the infinitesimal
generator B of the one-parameter group G(&). Then V (1) D(RB2) < D(B?)
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Jor every te R and, moreover, if e D(%B%), then V(t)p i3 an E-valued func-
tion of t, twice strongly continuously differentiable on R and such that

2

d
— V()p+2a—V(t)g =BV (t)g, teR?,

dt? at
V(0)p = a Vit)e =0
Y =9, E o )‘P =V.
Proof. If S(f) is represented as the matrix (9), then
'
(11) V(e = (1, HS(?) (q))

in the sense of the common rule of multiplication of matrices. The opera-
tor &% has the domain

(12) D(«#% ) = D(%)x D(%)
and is represented by the matrix

028 — 2007 - 20 —2a?

A2 = ,
—2a? V2Bt — 2av% + 2a
VB 0

80 that &%+ 2as/ =~( 0 fv%’) and
{13) (3, (24 2a) = V2221, §),

‘where both sides are defined on D(%2%) x D(%?).

According to a well-known semi-group theoretical lemma we have
S#)D(H") = D(«") for every teR' and » =1,2,... and, moreover,
if &= (p,y)eD(H™), then S(t)® is an F x E-valued function of ¢, n
times strongly continuously differentiable on R!' and such that

n
ae"

If pe D(%#%), then, by (11) and (12), V ()¢ is an E-valued function of ¢,
twice strongly continuously differentiable on R! and, by (11), (14) and
{13) we have

{14)

()P = S"8(t)D.

TV W20 V(g = (1, D+ 2040) 800 ("”)
12 dt @

— v2@2(}, 3) S (1) (q’) — 2T (1)
@

for a,ny- teR'. Moreover,

V(0)g = (3, $)8(0) ("') = (4, ) ("’) =g
@ 2
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and

d 4
=l Ve =@, %)-nf(q)) —o0.

(=0

This completes the proof.

The Kaec’s formula for the solution of the telegraphist’s equation
follows immediately from Lemma 2 if we choose as G (&) the group of
left translations in a Banach space of functions on R! such that the group
of translations is strongly continuous in that space. Indeed, in this case
Lemma 2 states that the Kac expression is the solution of the Cauchy
problem (1) for the telegraphist’s equation with %, (x) = 0.

In order to derive an analogous formula for the case of arbitrary , (z),
we shall need some other implications of Lemma 1. Namely, consider
the operator-valued function

w t) = %(Sn(t) 12(t)+821 Szz ) = %)S t)( 1)-
It follows from (7), (8)'a,nd (10) that
Wty =1} [ (G(vE)—G(—v&)pm,(dE) = L E(G (v, (1)p —G(— & (D))
Rl

and, moreover, by the same argumentation as in the case of Lemma 2,
it is easy to prove the following

LeMMA 3. For any te R' we have W (t) D(#*) < D(#*) and, if p < D(H),
then W (t)p is an E-valued function of t, twice strongly continuously differ-
entiable on R' and such that

d? d
d—tzW(t)qa—l—Za—W(t)tp =0v*#W()p, LR,

d
W(0)p =0, @, W(t)e = v&p.
=0

3. Cosine operator functions and the Kac’s formula for the second
order Cauchy problem in a Banach space. Let E, be a Banach space. Con-
sider the Cauchy problem

@' (1) +2a9¢’ (1) =‘v2A¢(t),

(15)
®(0) =@, ¢'(0) =gy,

where A is a linear operator from E, into E, with the domain D(A) dense
in Ky, v and a are positive constants, the initial data ¢, and ¢, are elements
of E, and the solution ¢(¢) is an E,-valued function of the real variable ¢.
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We want to show how the solution of (15) may be obtained, by means
of a generalized Kac formula, from the solution of the Cauchy problem

¢ (1) = Ag(),
¢(0) = ¢, ¢'(0) =0.
3.1. The connection of problem (16) with cesine operator functions.

We shall assume that problem (16) is well posed in the following sense:
there are real constants 7 >0 and C > 1 such that

1° for any gye D(A) problem (16) has exactly one solution ¢ (f) = ¢(¢; ¢,)
twice strongly continuously differentiable on [ — T, T'], whose restriction
is the unique twice strongly continuously differentiable solution of (16)
on every interval [7,,T,], such that — T <T, <0< T, <T

and

2° lip(t; @o)ll < C ligoll for every te[ —T,T] and gyeD(A).

It follows from 1° and 2° that there is a unique strongly continuous
operator-valued function [—T,T]>t—>¥%(l)eZL(E,y; E,) such that

(17) €()po = p(t; @)  for goeD(A) and te[—T, T].

(16)

We obviously have ¥(0) = 1, ¢(t) = ¢(—1) and, moreover, %(t) satis-
fies for |t]+|s)<T the d’Alembert functional equation (18)

(18) G(t+s)+EE—s) =2€()C(s).

Indeed, since D(A) is dense in E,, in order to prove (18) it is suffi-
cient to show that, for any se[ —T, T] and any g,eD(A) fixed, the E,-
valued function y(t) = €(t+8)@,+ € (1 —8)p, — 2% (t) € (s)p, Vanishes iden-
tically on [—T+ |s|, T'—|s|]. We obviously have (0) = 0 and since,

by (17), €(s)D(A) =« D(A), we have %I €(t)€(8)p, = 0, s0 that

) t=0

, d
¥ (0) = —

at (@(t+s)¢o+(€(t—s)%) =0,

=0

since ¥ (1) = ¢(—1). Moreover, ¢''(t) = Ayp(t). Form all the above prop-
erties of y(t) it follows by 1° that ¢(?) = 0. The d’Alembert identity
(18) is proved for |t|+ 8| < T.

We shall extend ¢ () to a £ (E,; E,)-valued function defined on the
whole R', assuming that, for te(0, T and» =1, 2, ...,

(19) C(nT +1) = 2€(1)¢ (nT)—€(nT — 1)

and that €(t) = ¢(—1t). As is easy to see, the extended function is strong-
ly continuous on R' and we have €({)D(4) = D(A) for every teR'.
If gp,eD(A), then it follows by induction in n that on any of the inter-
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vals [—T,T), (nT,(n+1)T] and [—(n+1)T, —nT), n =1,2,...,

the function {—>%(f)g, is twice strongly continuously differentiable and
2

that ¥ % (t)po = A% (1)@, on any of these intervals. Moreover, if g, e D(4),

then, by (19), for every n = 1,2, ... we have

d ad .
] at dt t=0

and
dz

lim rFr E(nT+t)p, = 244 (nT)p,— D> € (nT)p, = D € (nT)gp,,

t—>+0
where D_ stands for the left-hand derivative. Together with the strong
continuity of the function {—>%(t)p, on [0, oo), these equalities imply
that, if ¢, D(A), then the function {— % ()¢, is twice strongly continuously
differentiable on [0, oo) and that

2
W%(t)% = A%(t)p, for te[0, oo).

Since € (t) = ¢ ( — 1), the same is true for the negative halfaxis (— o, 0]
Therefore, repeating the argumentation used above in the proof of (18)
for |s| + [t| < T, we infer that (18) holds for arbitrary real ¢ and s.

According to the terminology infroduced by M. Sova [7], any oper-
ator-valued solution #(¢) of the d’Alembert functional equation defined
on R' and such that #(0) is the identity operator is called an operator
cosine function. Thus, starting from the Cauchy problem (16) and from
assumptions 1° and 2°, we have constructed a Z(E,; E,)-valued strongly
continuous cosine function € (t). Following Sova, we define the infinitesi-
mal generator A, of ¢(?) as the linear operator from E, into E, such that

(19) Ao = lfﬂ‘:?t_z(%(t)tp—?)

for any ¢ in the domain D(A4,) of A,, which consists of all the elements ¢
of E, such that the limit in the right-hand side of (19) exists in the sense
of the norm in E,. With our construction of the cosine operator function
€(t) we clearly have

(20) A c A,.

.The operator 4,, as the infinitesimal generator of a strongly contin-
uous cosine operator function, is closed and, moreover, for any teR',
we have € (1) D(4,) =« D(4A,), and if peD(A4,), then #({)p is an E-valued
function of ¢, twice strongly continuously differentiable on R' and such that

(21) 2 EWp = A€t = (1) Aoy
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for any te<R! (see [7]). Consequently it follows from (20) that the opera-
tor 4 is closable, and for its closure A we have the inclusion

(22) A c A,.

As we have sen, ¢(t)D(A) c D(A) for any t<R! and therefore, by
(21), if peD(A), then A% (t)p = A€ (t)p = €(t)Agp = ¢(t)Ap. From
the former properties of 4 it easily follows that

(23) €t)D(A) < D(A)

for every teR!. Now, the inclusions (22) and (23) imply that 4 = 4,
(see [4], p. 95, Lemma 1.3.3). Thus we have the following

LeMMA 4. If the domain D(A) of the operator A is dense in the Banach
space E, and if the Cauchy problem (16) i3 well posed in the sense that 1°
and 2° holds, then the operator A has the closure A, which is the infinitesimal
generator of a strongly continuous €(E,, E,)-valued cosine function.

If we modify the Cauchy problem (16) substituting 4 in place of 4,
then conditions 1° and 2° remain valid. Indeed, the existence part of 1°
follows from (21) and the uniqueness part of 1° follows by a reasoning
given in [4], p. 93. Property 2° follows also from (21). Consequently, if
we consider the Cauchy problem (16) under assumptions 1° and 2° and
under the assumption that

3° D(A) is dense in E,,
then, without essential loss of generality, we may assume that

4° the operator 4 is closed. '

But the conjunection 1°N2°Nn3°N4° is equivalent to the assumption
that A is the infinitesimal generator of a strongly continuous ¢ (E,, F,)-
valued cosine function. '

3.2. The one-parameter group constructed from a cosine operator
function. Let E, be a Banach space and let € (¢) be a strongly continuous
% (Ey; B,)-valued cosine function with the infinitesimal generator A.
Let E, be the set of all the elements ¢ of F, such that €(t)¢ is an E,-valued
function: strongly continuously differentiable on R!. By (21) we have
D(A) = E, and, by the main theorem of [4], E, under the norm

4 €(1)
a - '?

Iele, = lipls, + sup
0<t<1 E,

i3 a Banach space. Consider the product E = E, x E,, represent the
elements of F as the columns (Z;), pek,, yeE, and represent the linear
operators B from FE into E with domains of the type D(B) = D, x D,,
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B, B
B — ( 11 - 18) ,
B21 BZZ
where B;, maps D,_, into E,_,. According to the same main theorem of {4],
the operator B with domain D(B) = D(A) x E,, represented by the

matrix
01
B = ,
(10

is the infinitesimal gemerator of a strongly continuous one-parameter
group {G(t): teR'} c ¢(¥; E); whose operators are represented by the
matrices

D;eE;, as matrices

[4
€ (1) f €(v)dr
G(t) = 0
— ) %(t)

3.3. The Kac formula for the solution of (15). Let E, be a Banach
space and let A be the infinitesimal generator of a strongly continuous
€ (B,; B,)-valued cosine function ¢(t). Define the Banach space E,, con-
tinuously imbedded in E,, as in Section 3.2. Let & and v be positive con-
stants. Let N,(t), { > 0, be 2 homogeneous Poisson process with the mean
value EN,(t) = at and let

?
(1) = [(—1)MaOdr.
0

THEOREM. Under the above assumptions for any @,eD(4A) and ¢,eH,
the Cauchy problem (15) has the solution ¢(t), which is an Ey-valued function
twice strongly continuously differentiable on R'. This solution is unique
on any interval [T,, T,], T, <0< T,, in the class of Ey-valued twice strong-
ly continuously differentiable functions on [T,,T,]. Moreover, for t=> 0

this solution is expressed by the formula
Ea(t)

(24) T () = E€(vE(W)p+ B [ €¢(vr)gdr.

Proof. Existence of the solution. According to Section 3.2, the opera-

tor B = (020 A 3) with the domain D(B) =D(4)x E, generates

the strongly continuous one-parameter group

4
gmt)  [€r)de
(25) G(t) = 0 , teR!,

d%t % (vt
E(’”) (1)
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of continuous linear automorphisms of the Banach space E = E, x E,.

The operator
0 1
Bv a —
' (v”A —2a,)

with the domain D(B,,) = D(4) x E, is the sum of B and of the bounded
linear operator (g —02a,) of E into E. Therefore, by the Phillips per-
turbation theorem (see [6]), B, , is also the infinitesimal generator of a strong-
ly continuous one-parameter group @,,(!),teR!, of continuous linear

automorphisms of E. If g,e D(A4) and ¢1eE1, then (:“)eD(BM) and the
1

E,valued twice strongly continuously differentiable solution ¢(¢) of (15)
is given by the formula

(1) = (1, 006, 4(2) ("’)
P1

Uniqueness of the solution. Let ¢(t) be an E,-valued solution of the
equation ¢’ () + 2a¢’(t) = v2Ap(t), twice strongly continuously differen-
tiable on [7,,T,], T, <0< T,, and such that ¢(0) =¢'(0) = 0. Let A
be a regular value of the operator 4. Then (1—A)~'<¥(E,; E,) and its
range is D(A) « E,. Therefore (1— A)™! is a closed operator on the Banach
space B, with values in the Banach space E,, and consequently, by the
closed graph theorem, (1— A)™' ¢ % (E,; E,). Put

-1
o1t — ((A A) g (1) )
(A—A)""¢' (1)

Then &(t) is an E-valued function continuously differentiable on
[T,,T,] and such that P () = B, ,®(t) on [T,,T,] and that &(0) = 0.
Since B, , is the infinitesimal generator of a strongly continuous one-
parameter group of continuous linear automorphisms of E, it follows that
&(l) =0 on [T,,T,] (see [5], p. 212). But this imples that ¢(f) =0 on
7, T,]

Formula (24). For the group G (t) defined by (25) consider the £ (E; E)-
valued functions V(¢) and W(¢), defined as in Section 2. The square B’

0 1
of the infinitesimal generator B =( ' g O) of the group (25) has the
v

domain

D(B*) = D(4,) x D(4)
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and is represented by the matrix

v:4, O
(26) B = ,
0 w24

where 4, is the restriction of A with the domain

A4,) = {p:9eD(A), ApeE,}.

»

. o~ 0
Let ¢y, ;¢ D(A); then (-) ¢ D(B*). Since #(t)is a pair funection of i,

Pi
it follows from (25) that, for ¢t > 0,

falt)

(0) ( 0 ) (0) E [ €@ dr
vVinl. | = . and W(@)|[. | = 0 .
Po E#(vE (1))@, ?1

0

From (26) and from Lemmas 2 and 3 it follows that

(a) the function ¢(t) = E¥(v&,(t))@, is an Ey-valued solution of (15),
twice strongly continuously differentiable on [0, o) and corresponding

to the initial data ¢, = ¢, and ¢, = 0 and
£q(®)
(b) the function ¢(t) = E [ € (vr)p,dr is a solution of (15), E;-valued
0

twice strongly continuously differentiable on [0, o) (and therefore also
Ey-valued twice strongly continuously differentiable on [0, oo)) and corres-

0
ponding to the initial data ¢, = 0 and ¢, = (1, 0) B(_ ) = @;.
?1

Consequently, by the already complete existence and uniqueness
parts of this proof, it follows that if pye.D(4) and ¢,eD(A), then, for ¢ > 0,
the E,-valued twice strongly continuously differentiable solution of (15)
is expressed by

? £all)
(27) () =(1,0)G,,(?) (‘Po) = E%(vfa(t))tpﬁEf € (v7)pydr.
1 0

0
Since, for any flxed t> 0, the operators E,>¢p—(1, 0)@,, a(t)( )
falt) @

and Epp—FE f € (vr)pdreE, are continuous, and since D(4) is dense

in E,, it follows that the right-hand equality in (27) remains true for

@oeD(A) and ¢, ¢ F,. But as we already know, in such a case ¢(t) = (1, 0) X

X G, 4 (1) (%) is an Eyvalued twice strongly confinuously differentiable
?1

solution of (15). This completes the proof,

5 — Annales Polonici Mathematicl XXIX.3



272 . J. Kisyﬁs'ki

References

[11 R. Courant, Partial differential equations, 1962.

[2] U. Grenander, Probabilities on algebraic structures, 1968.

[8] K. Mac, Some stochastic problems in physics and mathematics, 1956.

[4] J. Kisynski, On cosine operator functions and one parameler groups of operalors,
Studia Math. 44 (1972), p. 93-105.

[6] K. Maurin, Methods of Hilbert spaces, 1967.

{6] R. S. Phillips, Perturbation theory for semi-groups of linear operalors, Trans.
Amer. Math. Soc. 74 (1953), p. 199-221.

[7] M. Sova, Cosine operator functions, Diss. Math. 49 (1966), p. 1-47.

Re¢u par la Rédaction le 7. 6. 1973



