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oo
Abstract. For optire functions f(¢) = Y a,2% M. N. Seremeta defined the
order g as follows n=0

(%) ¢ = limsupa[log M(r)]/p[logr],

where M (r) = max|f(z)| on |2] = r and e, 8 are the real valued monotonically indef-
initely increasing functions defined on [a, o) with a real, such that a(z) > 0, a[z(1 +
+6(z))]/a{z)>1 as £~ o0, for z in [a, o) and §(®) > 0 a8 z— oo and f(oz)/f(z) >1
as z—>po0 for 0< ¢c< oo. Seremeta established coefficient equivalents for ¢ defined
by (). In the present paper, we complimented the above result by defining the lower
order A = lim infa[log M(r)]/f[(logr)] and establishing the coefficients equivalents

r—+00
for A. Our sample result is

A= m&x{hmmfa(m,.k DB ((1/mg)loglas, I71)},
Tk

where {"‘”k} is a subsequence of {m,} in f(¢) = 2 an ™", Our results include the results

obtained recently by the authors in Trans. Amer Math. Soc. 203 (1876), p. 275-297.

1. Let f(2) = D a,2'%, a,,,‘;é 0, be an entire function. Following Sere-
k=0
meta [5], define the following:

. a[log M (r)]
11 = limsup —————=
where
M(r) = max If ()1
Z|=r
and e e and f e L°. By I° we denote the 'class of functions  defined
on [a, o) such that k is differentiable, monotonically strictly increasing,

approaches oo as # approaches oo and

. b1+ 8(x)) a]
(-3 v Y7

=1, hk(z)>0, ®€[a, ),
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for every &(z) such. that &(z)—>0 as x—>oo. Further, if & belongs to L°
and satisfies

. h(cz)
= 3
with 2 belongs to the class 4, provided that convergence in (1.3) is uniform
then respect to ¢, 0 < ¢; <0< 0y < o0.
Seremeta proved the following:
THEOREM [Seremeta]. Let a e A, f e L°. We set F(x; ¢) = f~'[ca(x)].
If dF(@; c)/dlogxz = O(1) a8 & — oo for all ¢, 0 < 0 < oo, then

a(k)
i (% log

=1, 0<0< w,

p = limsup
k00 1

)

k

for f(z) = 2 a,2* and [ entire.

Rema.rk Note that Seremeta’s theorem for f(z) = Z‘a,,z‘k a, #0,
takes the form

(1.4) 0 = hmsup
We prove the following theorem which is an analogue of Shah [7]
and the first author [1].

(> -]
THEOREM 1. Let a € A, f € L° and let f(2) = ) a,2'k be entire, a; # 0.
k=0

(1,,)
B [— log | —

Set
(1.5) F(2; ¢) = p*[o(a(a))].
If dF(z; c)/dloge = 0(1) a8 z—>oo for all ¢, 0 <c¢< oo and w(k)

—2;) 8 non-decreasing, then

(1.6) o = limsup a(%) .
ko0 ﬂ[( 1 )Iog Gy ]
My — Apey) @y
Proof. Let
(1.7) q = hmsup a(%) . .
k—1
p [( A= An )log @y, ]

Since y(k) is non-decreasing, we can always find, for all k > k,, y(k) > 0-
Thus, without loss of generality we may assume y(k)> 0 for all % in
(1.7). Thus, for given & > 0, there exists &, such that, for all k > ky(e) = &%,,

(L8) i) < (a+o( |

G

1 ) log
Ay —Ayy)
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From (1.8), we have
1

1.9 Ay— )t

(1.9) t—te87 | (5

) a(A,,)] < log Fre1

ay,

Adding inequalities (1.9) for k¥ = %&,, ky+1, ..., k, we infer

Q.
) a().,,,)] < log|—

Ay

(1.10) Y’ (A — Am_l)ﬂ-l[(

m-k

From (1.10) we have

(111) [ Z(l m_l)ﬂ"’[(

ko—

o) eom]] <o e |

@y

m= ko
This gives
a(4)
A2 li ’
(1.12) o< lmsup .3(1)1(1,,))
where
Dy(h) = Z(am — it [(55) e |

m-k

Now we compute D,(4;). If n(t) = 1,,_, if 4,_,<t<4,, then we have

Du(h) = py. 87| 55) atta)]

m-k

k

- ()] - Y wmale( ) s] -

m=ko+1

() e [ ]

A

ﬁ_l[(ﬁs)a( ")] /11k fn(t)dﬂ-l[(q—li-e)a(t)]—

Aeo+1

() (@) o]

- |(Gx) ] o f 20

k-l—!.

-5 [l) o]
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(by using hypothesis df(z, ¢) = 0(1)dloga for 4, sufficiently large)

)] _f o (k)
S (ERE (e

wn)  p) = [ () e} o+ o]

[ o]

1
= (o) et

since B~'[(1/(g+¢))a(4,)] is well defined.

Thus, from (1.12) and (1.13) it follows immediately that ¢ < ¢. Now
we need to prove ¢q < g¢. This is very simple and can be seen as follows:
Since y(k) is non-decreasing, we have

k
= Z P(m) (A —4y) < ".D(k)(l"“—lk“)'

m-ko

@,

(1.14) log

Qg1
From (1.14) we have

B

+l

a,

Q41

(1.15)

log

< ( 1 ) log
Apyr— A

Therefore, we have ¢ < ¢. This completes the proof of the theorem.

( 1k+l - 'lko) )

2. Lower order analogues. In this section we introduce the lower
order analogue by defining

e a[log(M(r))]
(2.1) A= llgmmi Allog7]

where a € L' and § € A. The growth o defined by (1.1) fora =1log, § =1
is due to Whittakar [9]. Coefficient equivalents when a =1log, g =1
are due to Shah [6], Roux [4] and for a = log? = loglog ... p-times
and g = log? = loglog ..., ¢-times are due to Bajpai, Juneja, and Kapoor
([11-{3]). In this context, we shall obtain the coefficient equivalent of
(2.1). These coefficient equivalents include earlier results mentioned above
under suitable selections of a and #. In fact, we have the following:
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o0
THEOREM 2. Let f(2) = Y a,2*, a, +# 0, be an entire function of growth A.
If acA and Be L’ and *=°

2o a[®] >0

vi@) _

for y defined on [a, oo) increases indefinitely, then we have

ald,, ]
(2.2) A = max {Iiminf . ko)
ing} k—o0 -
k ﬂ Tloglankl 1]
L "Ny
a[lﬂk_l]
= Imax {lim inf — }:
) \ koo 1 Bnp—s
B\ log|——
- A"k_znlc—l Gy,

where {1, } is subsequence of integers {4} and a, € {a,}.
LEMMA 1. Let f(z) = ) a,2’, a, # 0 be an entire function of growth
. n=0 '
o, A defined by (1.1) and (2.1). Further, if

(2.3) m(r) = max {|a,|r'}
and i
(2.4) #(r) = max{n | m(r) = |a,|r's},

then we have

o aflogm(n] _ . a[»(n)]
(2.5) ¢ = e plogr] " o® Fllogr]

for aed and e 1" such that

(2.6) lim 2022@) _ i 1m¥? _o.

Proof. From the well-known results (see e.g. [8])

_ 3 v(z)
(2.7) logm(r) = logm(r.,)+' f - dx
and — ’
(2.8) m(r) < M(r) < m(r) {1 +2v (r+ T{r—))}
we have
(2.9) »(r)log2 < f lfvi) dz < logm(2r) < log M(2r)

r
2 — Annales Polonlcl Mathematied XXXVII. 1
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and

(2.10) M(r) < m(r) {1 + 2% (r + T(r;_))} < m(r) {14 2»(27)}.

Hence, for functions of growth g, it follows

_ aflogm(r)] . alv(2r)
(2.11) Hmsup = riogr] RSP priogae]

LeMMA 2. Under the hypotheses of Lemma 1, we have

o.

aflogm(r)] liming a[r(2r)]

2.12 2 = liming L8 ,

(2:12) o Bllogr] s Pliog2r]
Proof. Let

(2.13) 5 = limint 22" sso.

r-o  pB[logr]

Then, we have for a sequence r =7y, 7;, ... —>00,

. 3
(214) a[v()]<bipllogrl, b =bd, 8<b, —<d<L

Then, if 72 <r < 1,,

(2.15) alv(r)1< alv(r,)] < dbdp[logr,]1 < bdp [—3— logr].
Algo, since f e L°, we have, for all 0 < 1/d < oo,
(2.16) bdﬂ[% logr] < (L+¢€)bdB[logr].
Then Cauchy’s inequality and the relation
kr

(2.17) y(r)logh < f ”—i‘;"l dr < logm(kr) < log M (kr)
implies, by making k->e,

. oaflogy(r)] .. . a[logm(kr)]
2.18 8 = liminf ——> "= < atosmisr)]
(8-18) e pllogr], ~ v Allogr]

< limint 2008 ¥ ()] _
r~o  Pllogr]

Thus, we need to prove the reverse inequality in case 0 < 8 < oo. Choosing
the constants o, & such that d < ¢ <1, dfo < e <1 and writing S, = R
so that

RE< 8, <8,<iR, (n>=ny),
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by relation (2.7) we have, for R, =7,

" v (@)

logm(8,) = logm(8S;)+ f

and
logm(8;) < ev(8;)log8,.

Then
Sﬂ,
dx
logm(8,) > logm(8;) +(8;) =
S,

> logm(8;) +(1—e)»(8;)1og 8,

1—
>[1+

Now, by using (2.15), we get

1
"’] logm(87) = — logm(8;).

logm(8S,) < elogm(8,)+ f M dx

n
or

Sﬂ
v(2)

(1—e)logm(8,) < f
S.

:n a™! [bd B [Tl'i- logw]]

<f dr
x

]
Sﬂ

1
La? [bdﬁ [_E logS,,]] (1—e¢)logs,.
This gives

(2.19) a[logm(8,)] < a [a‘1 [bd B [—;— IogSn]] log S”] .

Also from (2.10) and (2.15), we have

M(S,,)<m(8,,)[2v (s + 59)) +1]

and

(s + (‘;”)) < »(28,) < a—l[bap[ log28, ]]
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whence
(2.20) M(S,) < m(8S,) [1 +2q7? [bdﬂ [% 1og2,s,,]]].

Now, if the growth of a is such that a[zy(z)] ~ a(z) if @/p(z)—>co, then
we find that .

.. . allogM(8,)
(2:21) i inf (ﬁ(logs,.) )
Also, from (2.20), we have
(2.22) log M (8,) < logm(8,)+o(1)+log[a~"[bdp[log 8,]]]
and so that

< bd < 4.

logm (S,) log[a![bd B[log8,]]]
log M (S,) log M (8,) '

The last term in (2.23) approaches zero if 1> 0. But if 4 = 0, then
trivially we have 8 = 0 by (2.18). Thus

(2.23) 1< +o(1)+

o logm(8,)
(2:24) 1= lmint 31 (s,)

This implies for 0 < 4 < o0, by (2.21), that

. aflogM(8,)] _ .. a[logm(S,)]
2.25 liminf = liminf
(2.25) spoco PUOER]  spew . AL0EA,]

Hence, we have the result of the lemma.

if 0 <A< oo,

(=] .
LeEMMA 3. Let f(2) = ) a,7', a, # 0, be an entire function of growth 1

n=0

defined by (2.1), where a satisfies in addition (2.6); then we have

(2.26) 5 = liminf 1““"-" <
B —log!anl“]

and

(2.27) ¢t = liminf (4

Bn—1
ap,

_ <A
™ o=l

For (2.27), we define B negatively in the complement of [a, oo).
Proof. Assume first 0 < 5 < oo. Then, for 0 < ¢ < nand all n > n,(e),
we have

(2.28) exp] 1,07 (=) atts-n |} <o




Generalizations of growth constanis 21

Define

(2.29) 7, = kexp {ﬂ“[(;]—l—) a(z,,_,)]} for k =2,3,...

and assume (2.28) hold for all »n, since addition of a polynomial does not
affect the growth A, If r, <r<r,,,, then from Cauchy’s inequality and
(2.29), we have

(2.30) log M (r) > log|a,| + A,logr
=

log|a,| + 4,logr, > A,logk.
But (2.30) implies

(2.31) a(log M(r)) > a(A,logk) ~ a(4,)

> (1~ 08108 1 ass] > (n—)Llogr tog
" logk

= (-8 toen(1- 57|

~ (n—e)p[logr] as pel’.

This proves (2.26). Now, we establish (2.27). By hypothesis, g is either
positive or negative. In case it is negative, we find (2.27) true trivially.
Without loss of generality we assume, for all n > n,(e), that g is positive.
Thus, for given ¢>0 and (> &> 0, we have

(2.32) (t—e) ﬂ[(l—_l—l—) log
n n—1

Then by rearrangement and by summing the resulting inequalities -for
Ngy No+1, ..., n, We have

< Dt ns () et

k=nq

an— 1

]< a(A,y)-

n

(2.33) log

ano— 1
a

Let r, be defined by

(2.34) 7, = 26xp {ﬂ" [( Cie) a(ln_l-)]}; n=2,3,...

Let r, <7 < 7,,;. Then

(2.35) log M(r) >logla,|+ A,logr,

> A,logr, — 2(1/‘— )-k—l)ﬂ~l[(

k='n0 .

C_E) au,,_l)] 1 log ld,, |

> A,log2+0(1) ~ 1,log2
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Thus, we have the asymptotic inequality
a(log M (r)) > a(4,log2) ~ a(4,)

- (c—e)ﬂ[(l"g (r’gl )]

> (C—e)ﬂ[log (%)]

=~ ({—¢)B[logr].
This completes the proof of (2.27). For { = 0 or 5 = 0, the lemma is trivial.
LeMMA 4. Let f(2) = ) a,7'%, a, # 0, be such an entire function of

a, wkff—ozk)
growth A that {;— } forms a mon-decreasing funmction for
k+1
k> ky; then we have
. a(d,_,)
A < liminf

n—co 1 _
ﬂ [A—n lOg |a’n| l]
and

2 < liminf @(2y-1) =
~ . n—-00 ﬁ [( 1 ]0 a'n—l ]
-ln_}‘n—l) ¢

aﬂ
Proof. Since y(k) forms a non-decreasing function of k for &k > %,,
we have y(k) > y(k —1) for infinity of k; if otherwise, y (k) = p(k+1) =...
ad infinitum for % > k, say, so the radius of convergence of the series
Ya,z*% would ‘be finite, y(k) tends to infinity with k. When yp(k)

k=0
> p(k—1), the term a,2* becomes maximum term and we have

m(r) = lalr's,  v(r) =24 for p(k—1) <7 < yp(k).
Then, from (2.12), we have
(2.36) . v(r)> a7 '[(A—¢)B[logr]]
for ¢ > 0, and r > 7ry(e). ,

Let [2| =r>r, and let a,,lz""l and a2 k2 Ty > Fgy p(ky—1) > 74)
be two consecu};ive maximum terms so that %, <k,—1. Let k, <k
< k,. Since @, 2% is maximum term, we have
Hence for all  in this interval
(2.37) Ay =7(r) > a"‘[().—e)ﬁ[logr]].
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Further, since
(k) = p(ky+1) = p(k,+2) = ... = p(k—1),

we have
(2.38) Mooy = Ay > a7 M|(A—¢) Bllogr]]
> a”'[(A—e)flogy(k—1)—o]],
where
. mm[l’ ph)=pl1)]
Thus
a
(2.39) log = log|—> | < (4, — k) logp(k —1),
ko+1 | a
and hence, for large Fk,
(2.40) 1 >a-1[(1—e)ﬁ[ 1 jog| 2 —o]]
. e M — )'lco d ay
or
(2.41) a(%-,) > (A—e).

1
| ﬂ[;{— logla, [~ (1 + 0(1))]
%

Since 8 e L® and ¢ is arbitrary, first part of the lemma follows. For proving
of the second part, we notice that (2.40) gives

a(2,_;)
Alllog v (ke—L1) 1 —o()] =
Apgain, since 8 € L° and ¢ is arbitrary, the second part of the lemma also
follows by taking limit inferior in (2.38).

Proof of the theorem. It is very much obvious from the con-
struction of Newton’s polygon that growth constants ¢ and 2 deﬁned

by equations (1.1) and (2.1) are the same for the function f(z) = 2 a, 2k
given in Theorem 2, and its auxiliary function g(2) = 2 L Mg constructed

k=0
such that ¢ and f have the same principal indicies, i.e. they have the

same maximum terms. From Lemma 3, it is clear that 1 given by f gives
the inequalities

(2.42) —e.

a(l
(2.43) A> liminf oY
N+ 1 1 ]
g|-— log|—
and Aﬂk O
A,
(2.44) 2> liminf Y

nj—»00 1 a
i)
)'”k - )'”k— 1 ank
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-

for every subsequence {i,}; {4} and a, are corresponding coefficients.
But as g(2) satisfies all the conditions of Lemma 4, it follows from (2.43)
and (2.44) that

al
A = max {llmmf : }

el T oo ﬂ[ loglan,,l“]

"k
all,
= max {ljmini _ (e o] }

np | k-oo ﬂ[( 1 )log LT

}"‘k k-1 a“k

This completes the proof of the theorem.
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