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The ldgarithmic capacity in C"

by S. Kotopzies (Cracow)

Abstract. The logarithmic capacity defined by means of the Siciak extremal function is
proved to be a Choquet capacity in C". A sharper version of B. A. Taylor’s inequality
concerning the quantitative relation between the logarithmic capacity and some other capacity
in C is given. '

1. Introduction. If L denotes the class of all plurisubharmonic functions:
u(z) on C" which satisfy

u(z) < N+log* |z, zeC",
then for E a bounded subset of C" the real function
ug(z) := {supu(z): ueLand u <0 on E)
is called the L-extremal (extremal) function corresponding to E. Let

ug (zo) = imsupug(2)
zZ2~-zg
be the upper semicontinuous regularization of ug. This function and the
corresponding capacities have been studied by Siciak ([4], [5]) and others
(e.g. [2]), [3], [6]). The number

c(E):= exp[ —limsup (ug (z)—log™ [2])]
, [zt =
is called the L-capacity of E. For E -a compact subset of the complex plane
c(E) is its logarithmic capacity. Therefore ¢ is also called the logarithmic
capacity. In this paper we show that c is a Choquet capacity, i.e., it satisfies
the following axioms:

1) . c(Ey<c(F) if EcF,
(2) c(K)lc(K) if K;|K as j— 0,
3) c(E)Tc(E) if E,TE as j— 0,

where K, K; are compact and E, F, E; are arbitrary subsets of C". It is well
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known (see e.g. [5])) that ¢ satisfies (1) and (3). We prove that (2) is also
satisfied, thus giving a positive answer to the question set in [5]. Next, we
will slightly improve the estimate due to Taylor [6], concerning the relation

between ¢ and the capacity a introduced in [5]. Given a subset E of C", a is
defined by the formula

a(E) = (exp|luglls,)"', where B, = {z: [2] <1}.

As has been pointed out by Siciak, Taylor’s result can be stated as follows:

THEOREM 1.1. There exists a constant M such that for every subset K of
the unit ball in C"

a(K) < c(K) < Ma(K)"'".

We show that 1/n cannot be replaced by any number greater than tifn
> 2. Thus in the case n =2 we obtain the sharp value of this exponent.

This paper was written as a Master Thesis at the Jagiellonian University
during the academic year 1984/85 under the direction of Professor J. Siciak. I
would like to thank him for his advice and help.

2.- Preliminaries. The proof of the main theorem of this paper strongly
depends on the results obtained by Bedford and Taylor (B-T) in [1], {2] and

Taylor [6]. For the convenience of the reader the relevant theorems are
included here. -

THEOREM 2.1 (B-T, [1]). Let 2 be an open subset of C". If uy, ..., u
el>(QNnPSH(Q), k=1, 2,..., n, then one can define inductively the positive
current dd°u, A ... A ddu, setting for a test form ¢ of bidegree (n—k, n—k)

_[dd‘u, Ao nddu Ao = [uyddu, A ... Adduy A dd o,
o]

where d 0+ 0 and & =i(0- 0).

TueoreM 2.2 (Convergence Theorem B-T, [2]). For 0<i<k<n, let
{j} cPSH(Q) N L}, () be a sequence converging almost everywhere on
Qto afunction u' EPSH(Q) N LE (). If all but one of the sequences {uf}, ..., {u}}
are monotone, either increasing or decreasing, then

lim {@dd uj A ... Adduf = ‘qodd‘u‘ A ... A ddCuk,

j=o 0
lim [@uldd'u} A ... A ddut = [oulddu' A ... Addu",
j=o0 0
lim [@du) A du} Anddu} A ... Addub
j~® g

= {@du® Andu' Addu® A ... Addu
2
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Jor arbitrary test form ¢ of bidegree (n—k, n—k).
THeOREM 2.3 (Comparison Theorem B-T, [2]). Let 2 be a bounded open
subset of C". If u, vePSH() N L*(Q) satisfy

liminf(u(z)—v(z)) > 0,

z 0N
then
[ (ddv)" < | (ddu)".
e <) W <o)
Lemma 24 (B-T, [2], see also [3]) If E is a compact subset of C" and ug
is its extremal function, then

fug(ddu)” = 0.
E

THeoreM 2.5 (B-T, [2]). If ug is the extremal function of a compact set E,
then '

(dd°uf)"=0 on C"\E.

DerFiniTiON (see [4]). L, = {ueL: u(z) > M+log* |z| for some real
number M, and every zeC"}.

LEmMmA 2.6 (Taylor [6]). Let u, vePSH(C) N L2 (C™) and u(z), v(z)
—+00 as |z| 0. If u(z) =v(2)+0(v(2)) then

[ @dw} A (ddv)* = [ (dde o)
cn cn
for 0 < k < n. If, moreover, u, ve L., then the number
[ dd°u)t A(ddv)"™* = [ (dd°log™ |z|)" =:c,
cn ch
depends only on the dimension of the space.

Tueorem 2.7 (Taylor. [6]). If u, vePSH(C") r\Lbc(C") satisfy the fol-
lowing conditions:

(1 v(z)<u(z), zeC,

) limsup(u(z)—v(z)) =y < + o0, lirln info(z) =
|z} @ [z2] * @

(3) supp(dd‘u)" is compact,

then

| u(z)(ddv)" < | v(2)(dd° u)" +ync,.

cn cn
We also recall some well-known facts.
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LemMa 28. If u, veC! (C) and ® is a smooth current of bidegree (n—1,
n—1), then .

du AdoADP=dv Adundo.

Set w(x)=a,exp(—1/(1—1x|?) for |x| <1 and w(x)=0 for |x|> 1,
where a, is chosen so that

fw(x)dx =1.
«

For ¢ > 0 put
w, (X) = £ "w(x/e).

LEmMa 29 (see [4)). If ueL and € > 0, then the function u, = ux*w,
given by

urxw,(x) = {u(x+yow.(ydy, xeC
("I
belongs to C*NL and u,|u as ¢ 0.

For an arbitrary sequence ¢; | 0 the decreasing sequence of functions u;
=u, is called a standard regularization of u.

LEmMA 2.10. For E a compact subset of C" let

E® = {xeC" inflx—y| <¢}.
yeE

Then the set E® is L-regular, i.. the extremal function u,, is continuous.

LemMA 2.11. Let E be an L-regular compact subset of C" and u = ug its
extremal function. If {u;} is a standard regularization of u, then u;— u
uniformly on C" as j— o0.

Proof. The Dini Theorem implies that u; — 0 uniformly on E. This
means that for arbitrary é > 0 and j large enough we have u;—d < u on E.
The definition of the extremal function extends this inequality to C".

The following theorem will be used in the proof of the second result of
this paper. ' ' '

Tueorem 2.12 (M. Klimek [3]). Let f=(f;,....f): C"—C" be a
polynomial map and let f; be the principal part of the polynomial f; for
j=1.2....,n If f~1(0) = !0}, then the polynomial polyhedron

- E=1zeC": |f;(2) €1, j=1,2,...,n}
is compact and its extremal function is given by

ug (z) = max {0, (1/deg fy)log|f; (2)l, ..., (1/deg f,) log | £, (2)I}.
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3. c is a Choquet capacity. For E a subset of C" we put
c(E) = exp(—7y(E)),
where

y(E) = lim sup (uf (z) - log™ |z[)

Iz] +o0

and u; is the extremal function of E. The number c(E) is called the L-
capacity or logarithmic capacity of E and y(E) the Robin constant of E. We
wish to show that ¢ is a Choquet capacity. By the remarks in the introduc-
tion, it suffices to prove

Thueorem 3.1. Ler E,, k=1,2,..., be a decreasing (with respect to

inclusion) sequence of compact subsets of C". Put E = (\ E,. Then
k=1

lim c(E,) = c(E).

k—=o

Proof. Without loss of generality we may assume that every E, is a
subset of the unit ball and

E,=EU» = xeC: inf|x—y| < 1/k}, k=1,2,...
yeE

Then the extremal functions ug, are continuous (see 2.10). Furthermore, we

may consider only the case c¢(E) > 0, because otherwise our conclusion is a
direct consequence of Theorem 1.1 and the Choquet properties of a.
First we prove two lemmas.

LemMma 3.2. Let ueL, nC™ and ¢eCg. Put
w*=max {0, u—s}, O0<s<r.
If the set Q = \u <r} has smooth boundary, then
| @d°u A (dd°u)"~ ! = [ p(dd*u)".
a0 o}
Proof. Let 0 <s <r. Applying the Stokes Theorem and Lemma 28
we get ‘

() [ odun (@ wr™ = | od'w by
o1 o0 ,
= ‘ (p(ddc us)n+ ‘ du® A d‘(p A (ddf u.s‘)n—l
Q2 )

= {oddw)"+ | wd o A(ddu)" ' —
Q. é0

. | usddc (D. A (ddc us)n— 1 .
)
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(In fact u* is smooth only in some neighbourhood of 02 but all equalities
above hold true because of Theorem 2.2.) Letting s{r we see that the last two
integrals on the right-hand side vanish. For the first one we have

¥ [o(dd u) = pr(ddc W' = | pdd'w)"— | o(ddu)
n 2 c D

— [ pdd'uw)~ [ odduw) = |o(ddu).
ct cn\n n

(Here once again we use Theorem 2.2.) Comparison of (1) and (2) completes
the proof.

LemMa 3.3. Let ueL, y:= limsup(u(z)—log|z|) and

fz] =
F:={z: u(z)—log*|z| > y—¢}, where ¢>0.

df A is the Lebesque measure in C" and o the unitarily invariant surface
measure on a sphere, then:
(1) There exists a positive number p such that for every R > 2

A(F N Bg) > pA(By),

where By is the ball with center at 0 and radius R.
(2) There exists a positive number q such that for every real R, there
exists R > R, such that

o(F nSg) > qo(Sg), where Sg = 0Bp.

Proof. Let R >0 and let t, o, r be such that
0<t<min{l,expie—1}, o=R/(1+1), r=tg.
If m is defined by

m(x) = maxu(z), x>0,

Izl=x

then
u(z)—m(x) <0 for zeB,.

Since log™* (|z|/x) is the extremal function of B,, we have

u(z)-m(x) <log(y/x) on B,.
Hence
3 m(y)—logy <m(x)—logx, 0O0<x<y.

If we set x =g (¢ > 1), then letting y — + o0 we see from (3) that there exists
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Zp€S, such that

u(zo) = maxu(z) = y+logo.
lzl=e

Let B denote the ball with center at z, and radius r. From (3) we derive
u(z)—log(e+r) <u(zo)—loge 1if- zeB.
Hence
4) u(z) < u(zo)+log(e+r)—logo = u(ze)+log(l+1¢)
<u(zo)+34e for zeB.

If ze B\F, we have
® u(z) < loglzl+7—¢ < log(e+n+y—¢
< log(g+7)+(u(zo)—logg)—e <FTe—e+u(zo)
=u(zg)—1Le.

Since ue PSH (C") its value at z, does not exceed the mean value of u on the
.ball B. So (4) and (5) imply

u(20) A(B) < A(B\ F)(u(zo)—3€)+A(B N F)(u(zo) +3¢).

Therefore
A(B\F) < A(BF).
However, B < By and r = (t/(1+1)) R, so
A(Bg N F) 2 2(B N F) > 3 4(B) = $(*"/(1+)*") A(Bg) = pi(B)
and the first part of the lemma follows.
Now, put q = 4p and suppose that for every r > R,
Gp)a(S,)=a(S,NF).

Choose R > 2 so large that

| (2P)A(Bg) > 4(Bg,).
Fubini’s Theorem implies

A((BR\Bgry) N F) < (3P) A(Bx \Bgy).

This contradicts the first conclusion of our lemma, for we have

A(Bx NF) < A((Bx\Bry) N F)+4(Br,)

< (3 p)A(Br\Bry) + (1 ) A(Bg) < pA(Bg).

This completes the proof of the lemma.
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Put u = ug and u, = ug,, where ug, ug, are the extremal functions of E
and E, respectively. Let jul!,j=1, 2, ..., be a standard regularization of u,.

Lemva 34, V8 > 03ko Vk > ko), V) > ji: [ u(dd uf)” < 4.
. _ on
Proot. irom Lemma 2.11 we have uf — u, uniformly on C" as j — .
So for every ¢ > 0O there exists j, such that
w+n=ul >u for j>j,.

Theorem 2.7 now implies

(6) Juddiu)” < | (ue+ O (dde u))” < | uf(dd° w)"+ {nc,,
cn _ cn cn

where

= ((@d°u)" = | (dd°w)"

cn cn
is a constant depending only on the dimension of the space. From Theorem
2.5 we know that

supp(ddu,)" < E,.
So if we apply Theorem 2.2, then

UN _ im | uf(dd u)" = | u(dd°u)"=0.

j—o cn "
Combining (6) and (7) gives
(8) lim | u (ddui)" =0

j—'m ch

Now given @eCg such that ¢ >0 and ¢ =1 on B,, we may apply
Theorems 2.2 and 2.5 to get

9) limsup | (u—u)(dd u)” < lim [ @(u—u)(dd* uj)"
j—x By ji=® en .
= ‘ @ (u—u)(dd u)" = ‘. u(dduy)".
cn cn

If yeCy, 0<yY <1, ¢y =1 on E, and suppy < Bl, then the Convergence
Theorem 2.2 with Lemma 2.6 implies

j(dd‘u,, = M (dd w)" = lim [ y (dd ui)"

By J"mBl

< lim | (@ddu))" <c,

j_’wnl
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Hence
(10) lim | (dd°u)" =c,,
J"ODBI
(11) lim j (dd uf)" = 0.
i=® emp,

Let ¢ be chosen as in (9). Then Theorem 2.2 implies
(12 lim [u(dd'w)" < lim { u(dd*u)" = | pu(ddu)" = | u(dd‘u)" =0,
cn . cn

h—'wnl k—'mc,.

where the last equality follows from Lemma 2.4. So for arbitrary 6 > 0 one
can find koe N such that
(13) [u(ddw)y <o as k> k.
B,
Combining (8), (9) and (11) we may choose for every k > ko, a number j

such that

[ wdduy <1}o,

-
(14) [ (u—w)(@dd uf)" < [ u(ddu)"+40 <49,

B

By

| voldd ul) <379,
"\B

where 7, := {sup(u—uJ)(z): ze C", ke N} < 4+ and j > j,. Now, from (13),
(14) we get the desired result:

fuddu)" = [ u (ddu])"+ | (u—w)(ddul)
cn cr

cn
= [u(ddu))"+ [ u—w)(@ddu)"+ | (u—wu)(dd ul)"
ch B[ C"\Bl
<36+ [ 7yoldd'ul) <3,
c"\By

when k > ko and j > j,.
To prove Theorem 3.1 it is enough to show that the hypothesns that

(15) limsup (i (z)—log™* |z|) <y, <y= llmsup(u(z )—log™* |z})

Iz ~x |z] ~»ac

for k=1, 2,... leads to a contradiction.
Fix ¢ >0 and a > 0 such that

(16) 4e <y—y,, a(y;+e)<e and (l—a)(y—7y,—2¢) > 2.
Choose a sequence of numbers R(k) > 1, k =1, 2, ... so that

() u (2) <log™ [zl +7y, as |zl > R(k),
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(ii) the inequality from the second part of Lemma 3.3 holds for R
= R(k) and every k with a constant ¢ depending only on u and e.

Further, we need the following

LEMMA 3.5. For every k > 1 there exists 4,e C* N L, such that

(i’) ﬁk < U in AC",

(i) [ (dd4)* > c,—min {a"gc,/2"*", [klog(R(k)+y,+€)] '} =:P,
By

(iii) lim I u(dd u)" =0.
k—=o

Proof. Let k > 2 be a positive integer. Sin.ce
E,cintE, _,
for j large enough we have
' -, =0 onE,

where {uf_,};», is a standard regularization of w,_,. The definition of the
extremal function u, implies

uf_y <u,  for j=jy.

From (10) we know that

fdduf_) =P if j=ji.
By

Let {6,}, s=1,2,..., be a sequence of positive numbers decreasing to 0.
Lemma 3.4 implies that for every s there exists k, such that
17 Vk 2 k3R> ji: [uldd v )" <.

fad

We can assume that the sequence k, is increasing to infinity. Put _j,
= max {j{, ji\ for 2 < k <k,. For every k > k, find s such that k e[k, k,,,)
and put

Ju=max {0, ji, ji}-
If now & is an arbitrary positive number and é; < é, then for every k > kg,
(17) gives

f u(ddcuik— 1),l < 5s+r < 55 < 69 where ke [ks+r1 ks+r+ l)'
o

So the choice of 4, k=1, 2, ..., is accomplished.
For k > 2 we choose positive numbers r(k) such that

(18) log R(k)+7y; <r(k) <log R(k)+7,+¢
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and the boundary of the set {z: #,(z) <r(k)} is smooth (here we use Sard’s
Theorem).

We are now ready to prove the following
LemMma 3.6. Let @, = {ii, <r(k)}. Then
im | (u—i)d @, A(dda) ' =0.

k*mafa‘

Proof. It is clear that d°d, A (dd“@)" ! > 0 on 0Q, (see e.g. Lemma 3.2
and Theorem 2.1) Combining (ii’) and (18) we get

| (dd* @) > c,—1/kr (k).
2

Hence Lemma 2.6 gives
r(k)( | dd‘u A (dd°G@)" ' — [ (dd*4,)") < 1/k.
2 %
Repeating the argument from the proof of Lemma 3.2 we have
(19 | w—a)dq, A(ddea) !
oy
= | (u—i)(dd" &)+ jdu,t A du—a,) A (dda)"~
&

= [ (=) (dd* G)"+ j G (u—1h) A (A =
L. oy

- j U, dd° (u - ﬁk) (ddc )n !
%

= [ u(dd 4y — | ddd'u A (ddu) " +
&% %

+r(k)( [ dd u A (@dddy =t~ | (dd° &)
X %

< [ u(dd )"+ 1/k.
&

From (iii’) we know that the right-hand side of (19) tends to 0 as k — o, and
the lemma follows.

We proceed to the last step of the proof of Theorem 3.1. Let
u(2) = log™ [zl/R(k), i (z) = max {0, @, (z)—r(k)},
u*(z) = max {0, u(z)—r(k)}.
Apply the Comparison Theorem 2.3 to the functions

h=2a,+2 and g, =(1—a)u*+ay,
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and to a ball with radius so large that h, > g, on its boundary (observe that
im A, (z)/g,(z) = 2). Theorem 2.3 gives

Izl =

(20) J @dg) < [ (ddh)".

i <ay) . <)
Fix ze 0Bgyy M {x: u(x)—log* [x| > y—e}. From (18) we get
u() = logRk)+y—e>rk)+y—y,—2, u(z)>y—y, —2.
Now, apply (16) to obtain
(21) (1—a)u*(z) > (1 —2)(y— 7, —2¢) > 2.
Since |z] = R(k), from (i), (i') and (18) we conclude that
U (2) S u(2) < log® |z| +7, = logR(k)+7, <r(k).
Hence zeQ, = {i, <r(k)} and (21) leads to
h(z) =2 <(1—a)u*(z) = g, (2)-

Consequently we have proved that
(22) Fy = 0Bgyy N lz: u(@)—log™ |z] > y—¢) < | <g,).

Theorem 2.1 gives

23)  (ddg)" = 2 (’f>af(dd°u,,)f A (L—a)" I (dd ¥y~ > o™ (dd° v,)".

j=0
Combining (20), (22) and (23) we get
(24) " | (dd°v,)" < {(ddg)" < [ (ddg) < { (ddh).
Fy Fy thy <gg! Wy <9y
But (dd®v,)" is the unitarily invariant surface measure on the sphere Sg, and
[ @dv)" =c,.
SR

Because of (i) we may apply Lemma 3.3 to the left-hand side of (24) to
obtain

(25) a'ge, < | ddh)=2" | (dd‘u)".
thy <gy ) g <)
From (ii) and Lemma 2.6 we derive
(26 | @EES< [ ([ddu) < e —(c,—a"ge,/27 ) = a"ge, /2
iy cf'\n,
(We have proved that Bg,, = Q,, so B; = Q,) Since #, =0 on 2, we get
] @dd'@) = [ (ddu) - J (dd°u)",

a0y iy <gy} hi <agl (ON\9) nthy, <gy )
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and applying (25), (26) to the right-hand side yields

27) [ (@d@) >o"ge 2"+,
a0y g <gy)

Now, we claim that
(28) av,(2) <e for ze£,.
Indeed, take ze 2, such that v,(z) # 0. Then
log 2] < i (2) < r(k)
and (16), (18) implies _
av, (z) = a(log |z| —log R(k)) < a;(r(k)—logR(k)) < aly,+¢) <e.
From (28) we conclude that for zeQ, N {h, <g,}
2% =h(2) <(1—-)u*(2)+av,(z) < (1 —)u*(z) +¢,
and
w(z)>(1—a)u*(z) >e for ze 0Q, N {h <gs}.
So, we have proved '
' o N b < gy} = 0Q N {u—iy, > €}
Combining this inclusion with (27) gives

ex"gc, /2"t <¢ | (dd°u)" < [ (u—d)(dd )"
- o0y Aty <gx} o0y by <gyt
To the right-hand side we may apply Lemma 3.2 to obtain
ea" e/ < [ (u—id)d iy A (@da) .
oy
This contradicts the conclusion of Lemma 3.6, so the hypothesis (15) proved
false and the theorem follows.

4. Comparison of the capacities ¢ and a. It has recently been shown by
Taylor [6] that for every compact subset K of the unit ball in C"

(29) «(K) < c(K) € Ma(K)®

for some positive constants M and é independent of K with a defined in the
introduction. Combining Theorem 6.1 from [5] with Theorem 2 from [6]
(Theorem 2.7 in this paper) J. Siciak has observed that (29) holds true for
every 0 < 1/n. The following theorem yields an upper limit for 4.

THeOREM 4.1. Given b > § assume A, B, r are positive real numbers and m
is a positive integer such that

(@m=1)/m)b>1, A4r"-3>0, B = (Ar™—3) A=,

4 — Annales Polonici Math. 48.3
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Put
p(x, y) = Ach/';+Bx"'" L+ Ay™ for (x, y)e C?
q(x, y)=A"x
and
E={x,)eC:=p(x,yI <1, lg(x yl <1}.
Then '
EcilxI<r,lyI<r) and Jim c(E)/a(Ef’ = + .
Proof. For (x, y)e E we have
x| < A~ YV™,
Hence

12 |p(x, ) = A" —1=(Ar"=3) = A(ly|"—r") + 2.

So we conclude that (x, y)e{|x| <r, |yl <r}.
It follows from Theorem 2.12 that

ug = max {(1/m)log|pl, log|ql}.
Therefore .

y(E) = limsup (ug (z) —log* |z]) < (1/m) log 24,

J2] » oo
and the L-capacity of E is not less than (24)” '™ We also have
2(E)"! = [p(1, O™ > B'm, |
It is clear that
(c(E)a(EP)" > B*(24)~! = ((Ar™—3) A"~ Dim (24)~1
= J(r™—3/A)> 41@m~ imb -1
Hence

lim c(E)/a(E)’ = + 0,

A~® .
which gives the desired result.

CoRrOLLARY 4.2. For & >4, (29) is not true. Thus in the case n =2 we
obtain the sharp value of the exponent 6 (equal to %) in this estimate.
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