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Function classes pertaining to differential inequalities
of parabolic type in unbounded regions

by P. BesATA (Gdansk)

1, Introduction. We treat the problem whether some theorems on
differential inequalities of parabolic type hold true in function classes
in which the uniqueness of solutions of the Cauchy problem for suitable
parabolic equations has been proved. The theorems on differential ine-
qualities are more general and imply the uniqueness, the maximum prin-
ciple, a continuous dependence of solutions on the initial data ete. (see [10]).
For the sake of simplicity, in this introduction we confine ourselves to
the heat conduction equation with one space variable

(_1.-1) 'u/t = um

in the strip 8§ = (0, T') X (— o0, + o0). Tihonov [11] proved that the solu-
tion of the Cauchy problem for equation (1.1) is unique in the class of
such functions (¢, x) that for each of them there are positive constants
M, K such that

(1.2) |u(t, 0)] < Mexp(K|z?) in S.

Denote this class by E,. (This result has been extended to more
general equations and systems of parabolic type.) Next it was shown
that the following theorem on differential inequalities holds: if u (%, ®),
v(t, m)e By in 8, thon the differential inequalities
(1.3) w, < U

L e for (3,3)eS
(1.4) Vi 2= Voo
and the initial inequality
(0, ) <v(0,») for xe(—oco, +00)
imply the inequality

w(t,v)<<o(t,n) for (t,m)eS.
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(Theorems of thig type for more general non-linear systems of parabolic
inequalities covering (1.3), (1.4) can be found in references [10], [3],
(51, [6])

As concerns the uniqueness the clasg #, has been extended to a wider
class, say I,, of functions «(¢, #) which satisfy the integral growth condi-
tion

(L.5) [ [1u(t, @) exp(—K |w|*) dwdt < oo,
8

where the constant K >0 may depend on w. (In [2], [4], [7], [8] one can
find corresponding theorems relating to more general equations and
systems of parabolic type.) Now, in a natural way the question arigses
whether the differential inequalities theorem holds true for functions
of class I,. In section 3 (Theorems 1, 2) we prove that the answer is posi-
tive. Our result is concerned with & system of semilinear inequalities of
the form

(1.6) uggjgl(a'}k(t’ w)ui)z,-mk"‘ g(bj(t: w)ui)a:fl‘f{(t’ By ULy ey uw™)

(t=1,...,m). We assume only weak parabolicity and the coefficients.
are allowed to grow to infinity in various ways. The proof is patterned
on that of papers [2] and [4]. The maximum principle formulated in
section 4 is an immediate consequence of the above result. Theorem 4
of section 4 is a further consequence of the differential inequalities theorem
and reads that any solution of a system of parabolic equations, which
belongs to class I, and satisfies (1.2) at the initial moment ¢ = 0 is of
class B, in §. (Now & in (1.2) and (1.5) should be understood as a vector
and § a corresponding zone in the (¢, #)-space.)

Another uniqueness class for the Cauchy problem for the heat equation
and also more general linear second order parabolic equations is the class
of non-negative functions in § (cf. e.g. [1]). However, as we show in sec-
tion 5 by constructing a counter-example, in this class the theorem on
differential inequalities does not hold.

2. Preliminary considerations and assumptions. Denote by 2 = (x,,
.ovy @,) points of the Euclidean n-dimensional space H, (n > 1) and by ¢
points of the interval <0, 7>, T >0. Let 8§ = (0, TO>X E,, § = <0, T>x
x E,.

LeEMMA 1. Assume u(t, ) is continuous and has finite derivatives
Ugyy Uyy U, o 6ach point of S. Let w = u* = max(0,u) for (,z)e 8.
Tzien the function

2 = (WP, where ¢ >0,p >2,
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is also continuous and has finite derivatives Zagr %1y Pay, OF 000h point of 8.
Moreover, the derivatives can be represenied by the formulae

(2'1) zmj = l_pwp_lua;j’ zt = zl_pwp—.luu
— P im_ 1-2p,,. 0~2 1— -1
(2.2) Ry, = & (p—1)2'*Pw? Uy Uy, 2 Pyy® Yz

at eaoh point of §.
Proof. Evidently 2 is continuous in 8. Define

D = {(t,m)e8: u(t,») >0}.

At points of D the function # has the derivatives and they can be
calculated in usual way, whence we obtain (2.1), (2.2). It is obvious that
at points of the complement of D in 8 (D being the closure of D) we have
By =B = By = 0. Thus at these points (2.1), (2.2) hold either as their
right-hand sides are equal to zero since w = 0. Now let (¢, ) be a point
of §, situated on the boundary of D. In order to complete the proof it
is enough to show that at this point derivatives By %y gz, exist and are
equal to zero. To this end let

h
mj =(_ml’---’mj_1,wj+h,wj+l’---,mn)-
Since

(WP e)IP = e+ [(Ow)?+ TP (0w)Pw, 0< O <1,
we have
e (t, o) —2(t, @)
< W {[ 0w (1, 2™)]P+ P} PPP (3, )]
< {L6w(, o™) P+ P} -PIrwp= (8, o) Bt o)
— g0 - |uw,,(t, 2)| =0.
Thus zm](t ,®) = 0. Similarly one can show that z(f,#) =0 and
thereby (2.1) is proved. Taking advantage of (2.1) we get
[ Lo, () ™) — 2, (8, @)1 = 221, M) 07 (8, ) | B g (8, )
<2 (1, 0w (1, &) B [, (8 ) — g, (1, @)1+
+ 2P (t, o™y w? 2 (¢, &™) otz (¢, )] |h=2u (8, )|
= 6P 0 [ty (¢, )|+ &P O - Jatg (1, @)| |ug, (8, 2)| = 0.

Therefore 2 (¢, ®) = 0 which was to be proved.

ConprtioN O. A funection u(t, z) defined in S will be said to satisfy
condition O in § if w is continuous in S, has the derivatives U,y Upy Yoy
at each point of § which are measurable functions in § and locally bounded..
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LevMA 2. If w satisfies oondition O in S, 80 does the fundtion z defined
in Lemmia 1.

This lemma follows immediatelly from formulae (2.1), (2.2), our
assumptions and suitable theorems on measurability of a product of
measurable functions.

Throughout the paper we make the following assumptions concerning
gystem (1.6):

(A;) the coefficients af, bf and their derivatives (a,k)z,, (% )az,
(b;),,j are measurable and bounded in any finite cylinder (0, T) X (|w| < R
and, for simplicity, aj, = a};,

n
(A,) kZ‘ afe(t, ®)E;6x >0 (4 = 1, ..., m) for any real vector (&, ..., &,)
k=1 —
and for (7, »)e S,

(A,) functions f*(t, o, wY, ..., w™) (i =1,...,m), being defined for
(t,)e 8 and w?,...,w™ arbitrary, satisfy the following monotonicity
condition: for any fixed ¢ (1 < ¢ < m) the relations w' <o (j =1, ..., m),
w* = o*, imply the inequality

it 0, uty ..., '“m)i:fi(t)w, oY, ™)
for almost all (¢, #)e S,

(A,) there exist functions ¢}(¢, %) (i, =1,...,m) continuous in 8,

¢t > 0 for s # 4, such that the inequalities

m

[fit, o, uty ..., ™ —fi(t, z, v, ..., v™)]sgn (4 <20}t @) |u’— o

8=1

(4 =1,...,m) hold almost everywhere in S.

3. Differential inequalities. Define the operators

n

Li'u, = 2 (ajk (t, c’.ﬂ) 'u)wjzk—- Z (b; (ti m) Iu’)w;’

1,k=1 f=1
n .
Lo = kZ afy (1) @) Dy, + D) Uity 3) B,
jl =1 j=1

(t=1,...,m), (t,)e S. Now we prove a general theorem on differential
inequalities.

TemoREM 1. Let fumctions w'(i,z), v°(t,») (4 =1,...,m) satisfy
condition O in 8 and the initial inequalities

(3.1) WO, <2 0,2) (G =1,...,m) for vc B,.
Define the sets
(3.2) D' = {(t, )¢ 8: ul(t, @) >, @)} (I =1,...,m)
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and suppose that for every fimed i the differential inequalities
(8.3) ui(t, @) < L[, @) 1+14t, @, w2, @), ..., w™ (3, @),
(8.4) v (t) @) > L [o*(¢, o)1+ 741, @, 01(2, @), ..., o™ (1, @)).

are satisfied whenever (t,®)e D', Lot assumptions (A,)-(A,) related to the
cogfficients of L' and functions f* be fulfilled. We assume there exist functions
'ty w)e O*(8) (i =1,...,m) such that &'(t,z) >0 in every compact
subset of 8,

(8.5) L't ) '+ di<0 (i =1,...,m)

8=1

almost everywhere in S and, moreover,

(3.6) [[(wi— 'u‘)"'[m;a,xz|a§,,¢,ik|—|-@‘(mg,xla}k|+ma.x|b§|)]dmdt< o0
8 k 9, i

(¢ =1,...,m). Under these assumptions we have

(3.7) wit, o) < vt 0) (G =1,...,m)
everywhere in S,
Proof. We shall make use of the identity

(3.8) D)@' = DF (L +ah— Dot (Le— )+
[ 2 i

+ 2 D17 Y e, Dt~ i),
J

where functions ¢(f, ) (i =1,...,m) will ‘be determined later to be
smooth and non-negative in S, with compact support as functions of »
in H,. For ¢ we substitute in (3.8)

¢ = [‘(wi)p+ Ep]_llp (t=1,....,m), e >0, p>2,

where w' = (u'— ")t = max (0, ¥*—*) for (¢, »)e S.
By Lemma 2 and assumption (A;) we can integrate (3.8) over the
StEID (0, to) X By, toe (0, T, to gob

(39) [ Xy
n i to ~ . . ]
= Pli= ¢ el — '
| 24 ¢iado+ fEf D (Lo + ) — ' (L'd— 2f) ] dm
r, 3 0E, “7

If for a certain ¢ the set D° defined by (3.2) were not empty, then at
points of this set we would have, by (2.1), (2.2),

Lit— g = (2P (0P (Thwh — wf) + 8 (9 — 1) (&)~ (") Y oo, w0t +
R

+ePH)?,  whore H' = D (@), — D) (%)
FRZ

7
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Hence, taking advantage of inequalities (3.3), (3.4) and their parabo-
licity we obtain
(3.10) L''—zt
> — (@)W e, w™)—fH(t, @, 0% L., ™) ] P HE (2F) 2,
Note that for (f, »)e D¢, w—v'<w (I =1,...,m) and u'—o* = w'.
Applying successively assumptions (A,), (A,) yields
fi(t: %, 'u’l! sery '“’m)"'fi(.t: @y Y ..., ,vm)
<fHE, @, v1RwY L 0P ™) —fH (L, @, 0 L, 0™ Zogfw'
which together with (3.10) gives ’
(3.11) Lid'— 2 = — (") (w')"~ 1203w8+ o H (&),

Further, since ¢f>0 for s #4 and (#)"?(w)*~'<1 we obtain
from (3.11)

(3.12) Lidt—d > -—Zo}z’—}-s”(H“—[—c ) (ZFP2.

Inequality (3.12) is derived for points (_t, w)e D'. Notice that thig
inequality holds true algo in the complement of D’ in § and, in particular,
in the intersection of the boundary of D with § for there the left-hand
side of (3.12) is equal to eH® and the right-hand side is less than or equal
to eH’, Thus (3.12) is valid for all (f, #)¢ 8. By (3.12) and by relations
¢'(t, @) =0, w'(0, ) = 0 we find from (3.9), after letting ¢ — 0,

(3.13) Ewa" ‘t=,0dm<f fZ‘w[LupurZ dio® - '] dw .
n 1

We set in (3.13) ¢'(t, @) = y%(2) &*(¢, ), where & are the functions
appearing in a,ssumptions of the theorem and yR(m), R >1, is a function
of cla.ss 0*(B,) such that y®(z) = 1 for |#] < R—1, y®(») = 0 for lwl = R,
0<y®(#)<1 in E, and the first and second derivatives of y E(x) are
bounded in B, by a constant independent of R. Now

(3.14)  Ligpiq 20‘390"-1- 7t
=V {quji+ Zci¢s+ Qi}+22 a’.ﬂcy.t: Q);, + qu{Z a’ﬂcya;ja;k'l'z b] Ve }
By (3.5), (3.14) it follows from (3.13) that

(3.15) f2w<p
< f E{;‘w 2

¢

tﬂto

dzdt.

R o, + Q)‘(jzk: aj yf,;,,k+ 2 b}:yﬂ;)
) 7
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In view of (3.6) and the properties of 4%, the right-hand side of (3.16)
tends to zero as B — co. Thus for any ¢ > 0 we have

max w'd'de < 0.
0T jzjege "1

~

Since g is arbitrary, w* > 0 and & > 0 in (0, T X (|2 < o), therefore
w*(t, ») = 0 in S which means that «'(¢, ») < v*(f, #) in § and the proof
is completed.

The following theorem is a particular case of Theorem 1:

TUBOREM 2. We assume that u*(t, ), v'(1, ®) satisfy -condition O in §
and

(3.16) W0,0) <00, (i=1,...,m), seH,.
Lat
(3.17) D= {(t, ) e8: W, ) >0, a) (@ =1,..,m).

Suppose that for any fived i we have
(3.18) ui(t, o) < L[u'(t, @)1+ ft, =, w'(t, @), ..., w™(t, @),
(3.19) v(t, #) = L[ (3, @)1+ 12, o, ' (8, @), ..., v™ (3, 0))
whenever (t, ®)e D'. Wa retain assumptions (A,)-(A,). Assume that
(3.20) [ [ (w—v")*exp{—E(j2/*+ 1) [In(jn]*+ 1)+ 1]} dwdt < oo
* (i=1,...,m)

for some constant K > 0. The constant A is supposed to be mon-negative
whereas u may be any real number if A >0, and u =1 if A = 0. Moreover,
we assume that the coafficients al,, b; of operators L', and functions ¢ satisfy,
almost everywhere in 8, the following growth conditions: there are comsiants
A, B, C> 0 such that

ok < A (o4 1) Y2n (9|24 1)+ 1174, [} < B(jlo*+1)*,

(3.21) D) < O(lal+ 1) [l (o +1) 411

if A >0 (u-arbitrary), and
|afil < A (Jof*+1) I (Jof*+ 1)+ 1774,
(3.22) b1 < B(|2f*+1)"* [In (|2]*+ 1)+ 1],
D) ¢t < Olln(jaf + 1)+ 1)

if A =0 (a3 1)
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The above assumptions imply the inequalities
(3.23) ui(t, o) < v, 2) (6 =1,...,m)in S.
Proof. To derive this theorem from Theorem 1 we set in Theorem 1

KE+2
11—t

(3.24) @'=0= exp{— (|2|*+ 1) [In (o) + 1)+1]"},

where, for both cases (3.21), (3.22), one can take

(325) » = nA(E+2) (A+2|ul)*+ [nA (A— 2|4 1)+ynB1(A+2 |ul) +
+2nA |l 2 |u— 1+ A+ O/(E+2).

At firgt the proof is caried out for'the strip & = (0, 1/2+) X ¥, and
then extended in a usual way. Using (3.21), (3.22) one can show, as in [4],
that @ defined by (3.24) satisfy inequalities (3.5) in §” and that (3.20)
implies (3.6) (with § replaced by §"). We omit the computational details.

4. Maximum principle and estimates. The next two theorems are
deduced from Theorem 2.

ToEoREM 3 (Maximum principle). Supposs w'(t,w) ({ =1,...,m)
satisfy in 8 condition C and the system of equations

(4.1) ul = Cul+fi(t, e uty .o, u™ (G =1,...,m),

where operators L' are defined as in section 3, whose coefficients satisfy
hypotheses (A,), (A,), and functions f* satisfy assumptions (A,), (A,). Le

WO, o)< M (i =1,...,m), v B,,

M being non-negative constants, and

[[ @yt exp{— E(laP*+1)** [In(jo]*+ 1)+ 11} dwdt < o0, K >0,

s

(t=1,...,m), where A, u are defined as in Theorem 2. Assume that the
growth conditions (3.21), (3.22) respectively, are satisfied almost everywhere
in 8. If, moreover,

[2 (a;k)m,mk—Z(b;)mj -Mi"‘fi(t’ Ty -Mly teey Mm) <0 ("’ =1,..., m))
ik F]

then
W, )< M' (i =1,..., M) for (t,w)eR.

Proof. We verify immediately that functions »* and o' = M* satisfy
all the assumptions of Theorem 2.
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Remark. Theorems 1, 2 imply suitable theorems on the uniqueness
of the Oauchy problem for system (4.1) in the strip 8. A proof of the
uniqueness not based on differential inequalities is given in [4].

TaroreM 4. Let funclions w'(t,2) (i =1, ..., m) fulfil condition O
in 8 and constitute, in S, a solution of system (4.1). We retain assumptions
(Aq)-(Ay). Suppose there emist constants M, K, K,, 1> 0 and a constant u,
which is arbitrary if 2 >0 and u>1 if A =0, such that

(4.2)  |u}(0, #)| < Mexp{E (jo+1)"*[In(jef+1)+1]*}, weh,,

(4.3)  1f'(t;2,0,...,0)]

< Mexp{E (jof+ 12 [ln(jo]*+1)+11"},  (#, )¢ 8,
and
(4.4) £ [ 10t (¢, ®)) exp {— Ko(jof + 1) [In(jo]* + 1)+ 1]*}dodt < oo

(¢ =1, ...,m). FPurther let the growth conditions (3.21) in case A >0, pu
arbitrary, and (3.22) in case A = 0, u > 1, hold true almost everywhere in S.
Assume, moreover, that ¢ = o and that the inequalities

| ; (a’;k)mk

N (Gh)agm,— D) (), < O(lof*+ 1) [In (jo]*+ 1)+ 11
J

< B(jol*+ 1),

(4.5)

if 4 >0, u-arbitrary, and

| 3 (@), | < Bllal 41" [In (2 4 1) +11,
]

(4.6) |
%‘ (dagey— D) (B, < Ol (lo 1) 417
A )

if A =0, u>=1, are satisfied almost everywhere in S.
Thon the estimaies

(4.7)  |[ut(t, 2)| < Mexp {2K (|o/*+1)**(n(|z*+1)+11} (E=1,...,m)
hold for (t,x)e8° = (0, 8> X B,, where 6 = min(-zl—v, T) and

(4.8) v = nAK(A+2|ul)+ [nd(1A—2|+1)+3yn B](A+2|ul)+
+2nd |u](2|u— 1|+ )+ 20+ 1)/ K
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Proof. Denote

K
1—ut

(4.9)‘ v = Mexp{ (|2> 4 1) [In (|o24- 1)+ 1]”}.

To deduce this theorem from Theorem 2 we first show that functions
v =9v ({ =1,...,m) satisfy inequalities (3.19) for ¢ =1,...,m, (t,»)
¢ 8%, By assumptions (4,), (4.3) we get

(4.10) Lt — ol fit, m, 0, ..., 0™ < Lio— o+ (2 i +1)v.
8

One can show by direct computation that for v defined by (4.9) the
right-hand side of (4.10) is non-positive in 8°. We check immediately
that functions u' and o' = v satisfy all the remaining assumptions of
Theorem 2, whence we obtain the inequalities u'< » in &°. Similarly it
can be :shown that inequalities (3.18) are satisfied with «° substituted
by —wo. Thus setting, in Theorem 2, %* = —v and v* = «’ we observe
that all the assumptions of the theorem are fulfilled. Hence we get
inequalities #° > — v which together with %’ < v imply the assertion (4.7).

5. Remark on positive solutions. Now we show that in general dif-
ferential inequalities theorems are not valid in the class of non-negative
funetions (in which the uniqueness of the Cauchy problem for a class of
parabolic equations holds true). To this end we make use of a solution
given by Tihonov [11]. In order to prove non-uniqueness of the Cauchy
problem for the heat equation

(5'1) wt(.t) L) = Wy (8, 2)
in the class of functions satisfying condition
(8.2) lw(t, 2)] < Mexp{K |»|*+*}, &> 0 arbitrary,

Tihonov constructed a (regular) solution w(t,») of (5.1) (satisfying
(5.2)), such that w(0, ) = 0 for ze(— oo, co) and w(¢, x) %% 0 in a strip
8 =(0,T>X(—c0, o).

Now, define (¢, ») = w2(t, )4+ C and o(¢, ) = C, C = const > 0.
It can easily be checked that functions %, v satisty, in S, inequalities
Uy K Uggy Uy 2 Uy TESPectively, both are non-negative and (0, ») < (0, @).
However, inequality (i, ) < (¢, #) is not satisfied in §.

From the above remark it also follows that it is not true that every
non-negative solution of the inequality u, < u,, belongs to the class I, (see
introduction; although, as is known, any non-negative solution of the
equation (5.1) does).
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