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On the behaviour of solutions of the differential equations
r@y)Y +a@Y+p®))y = f )

by N. Parn1 and S. Parur (Berhampur, Orissa, India)

Abstract. In this paper, we consider the nonlinear non-homogeneous third order
differential equation

(r@yY +q@YP+p@0)y = ),

where p, q, r and f are real-valued continuous functions on [0,00] such that r(t) >0, f(1) =0
and both « > 0 and § > 0 are ratios of odd integers. Sufficient conditions are obtained for non-
oscillation of solutions of the equation in two cases, viz, (i) p(t) 2> 0 and g{t) < 0 and (ii) p(£) <0
and any q(f). Some results concerning the asymptotic behaviour of solutions of the equation are
also given.

1. Finding sufficient conditions for non-oscillation of solutions is a
problem of general interest in the theory of ordinary and delay-differential
equations. In this work, we consider

(1) (r@®)y") +a@ P +p®)y* = f(0),

where p, g, r and f are real-valued continuous functions on [0, oo) such that
r(t) > 0 and f(t) > 0 and both « > 0 and B > 0 are ratios of odd integers. In
[7] N. Parhi gave sufficient conditions for non-oscillation of solutions of (1)
with p(t) <0 and ¢g(t) <0. In section 2 of this paper we give sufficient
conditions for non-oscillation of solutions of (1) with p(t) > 0 and ¢q(¢) <O.
These results are more general than those obtained by the present authors in
[8]. We also study the asymptotic behaviour of non-oscillatory solutions of
(1) in this section. Sufficient conditions are given for non-oscillation of
bounded solutions of (1) with p(t) < 0 in Section 3. We note that there is no
sign restriction on g for most of the results in this section. Also we obtain
results concerning the asymptotic behaviour of solutions and the existence of
a positive increasing solution of (1). These results strengthen some of the
results of Hanan [3].

Equation (1) with r(t)=1, f(t)=0, =1 has been considered by
Heidel [4], Nelson [6], Waltman [10], and for the case a =g =1, r(t) =1
and f(t) = 0 we should mention the papers of Barrett [1], Hanan [3], Lazer
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[5] and the book of Swanson [9]. Erbe [2] has considered equation (1) with
r(t) once continuously differentiable, f(f)=0 and f=1. The above-
mentioned authors have given sufficient conditions for the existence of
oscillatory and non-oscillatory solutions and have studied their asymptotic
behaviour. It seems that the research on non-homogeneous third order
differential equations started with the work of N. Parhi [7].

We restrict our considerations to those real solutions of (1) which exist
on the half-line [T, o0), where T > 0 depends on the particular solution, and
are non-trivial in any neighbourhood of infinity. A solution y(f) of (1) on
[T, o) is said to be non-oscillatory if there exists a t; > T such that y(t) # 0
for r > t; it is said to be oscillatory if for any t; > T there exist r, and 1,
satisfying t, <, < t; such that y(t,) >0 and y(t5) <0, and the solution is
said to be a Z-type solution if it has arbitrarily large zeros but is ultimately
non-negative or non-positive.

2. In this section we obtain sufficient conditions for the non-oscillation
of solutions of (1) with p(t) >0 and q(r) < 0. Also results concerning the
asymptotic behaviour of these non-oscillatory solutions are obtained.

TueoreM 1. If q(t)+¢*p(t) < O for large t, then all solutions of (1) with a
= B are non-oscillatory.

Proof. Let g(t)+t*p(t) <0 for t =2ty > 0. Let y(r) be a solution of (1).
If possible, let y(r) be of non-negative Z-type with consecutive double zeros
at a and b (t; < a <b). So there exists a ce(a, b) such that y'(c) =0 and
y' (1) > 0 for te(a, ¢). Consequently, there exists a de(a, ¢) such that y”(d)
=0 and y'(f) >0 for te(a, d). Clearly, for large t,, y'(t) = y(t)/t for
te[a, d]. Now, integrating

@ [r@Oy Oy OF =r@0" 0] —q@0 OF =pO Y Oy O+ Oy ()

from a to d. we obtain
d
~

0> — |[g( @) +p)y (0] (O dr

y()y()

> — [q(t)+t"p(r)] t >0,

a
a contradiction. Let y(t) be of non-positive Z-type with consecutive double
zeros at a and b (to < a < b). So there exists a ce(a, b) such that y'(¢c) =
and y'(t) > 0 for te(c, b). Integration of (2) from ¢ to b yields

b
0= [[rO(" ) —g@ O —pOy @y O+ Oy ®)] dr >0,

a contradiction.
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If possible, let y(t) be oscillatory with consecutive zeros at a, b and 4’
(to <Sa<b<d)suchthat y'(a) <0, y'(h) 20, y'(@) <0, y(t) <0 for te(a, b)
and y(t) > 0 for te(b, a). So there exist ce(a, b) and c’e(b, a’) such that
y()=0=y'(c) and y'(t) >0 for te(c,b) and te(b, c). If possible, let
y"(b) £ 0. Integrating (2) from ¢ to b, we get

02> r(b)y'(b)y" (b)
b

> [[r@(" @) =g O —pO) @Oy O+ Oy (] dt > 0,

a contradiction. Hence y”(b) > 0. Since y”(t) is continuous, y”(t) > 0 for
te[b, b+6,), 0 <d, <c’'—b. So y'(t) is increasing on [b, b+4,). Again y'(c)
=0 and y'(t) > O for te(b, ¢’) imply that y’(r) is decreasing on [c’'—§,, '],
where 0 <6, <¢'—b. This in turn implies that y”'(1) < 0 for te[c' —é,, ¢'].
Hence y”(d) = 0 for some de(b, ¢') and y”(t) > O for re[b, d). Clearly, y'(t)
= y(t)/t for te[b, d}. Now, integrating (2) from b to d, we obtain

0= —r)y' by’ (b)

d

> = [ O)+p@)y (] y (1)dt

d

> — [q(t)+r“p(t)]ﬂ¥l'~)dt >0,

a contradiction. Hence the theorem.
ExampLe. All solutions of

Yy =2V +1y* = 1/t?, 121,

are non-oscillatory. In particular, y(¢) = 1/t is a non-oscillatory solution of
the equation.

THEOREM 2. Let q(t) be once continuously differentiable and such that
q'(t) = 0 and lim [q'(t)/p(t)] = . Then all bounded solutions of (1) with a > 1

I—a
and B =1 are non-oscillatory.

Proof. Let y(z) be a bounded solution of (1) such that |y(¢)] < K for ¢
> T So there exists a to=> T such that ¢'(1)> K* 'p(t) for t > 1t,. If
possible, let y(t) be of non-negative Z-type with consecutive double zeros at
a and b (to <a<b). So there exists a ce(a, b) such that y'(c) =0 and
y'(t) > O for te(a, ¢). Clearly, y"(a) =2 0 and y”(c) < 0. Integrating (1) from a
to ¢, we get

0> — fa()y (O dt—[p(0)y* ()t
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> —q(y©@+{[dO—-p@®y ()] y(r)dr

> [[q'(t)—-K*"' p(t)] y () dt > 0,

a contradiction. Let y(tr) be of non-positive Z-type with consecutive double
zeros at a and b (t, < a <b). So there exists a ce(a, b) such that y'(c) =0
and y'(t) >0 for te(c, b). Now, multiplying (1) through by y'(r) and
integrating the resulting identity from c¢ to b, we get

b
0= [[r@ (" O —q ' ) =pOy )y O+f Oy ©] dt >0,

a contradiction.

Let y(t) be oscillatory with consecutive zeros at a, b and a’ (1o <a<b
< d’) such that y'(@) <0, y(b)=0, y(@) <0, y(t) <0 for te(a, b) and
y(t) > 0 for te(b, a’). So there exist ce(a, b) and ¢’'e(b, a’) such that y'(c)
=0=y'(c') and y'(¢) > O for te(c, b) and te(b, ¢’). We consider two cases,
viz,, y"(b) <0 and y”’(b) > 0. If y”(b) <0, then we multiply (1) through by
y'(t) and integrate the resulting identity from ¢ to b to get 0
2rb)y (b)y’(b) >0, a contradiction. If y”(b) >0, then there exists a
de(b, c’) such that y”(d) = 0. Now, integrating (1) from b to d, we obtain

d
0> —r(B)y (¥ > —q@dyd)+[[qgO)—K""p®)]y(r)dt >0,
b

a contradiction. This completes the proof of the theorem.
The following example illustrates the above theorem.

EXAMPLE.
LA '+l 3—1 t>1
1027 TRV T '

All bounded solutions of this equation are non-oscillatory. In particular,
y(t) = 1/t is a bounded non-oscillatory solution of the equation.

Remark. It is interesting to note that Theorem 1 cannot be applied to
the example illustrating Theorem 2 and Theorem 2 cannot be applied to the
example illustrating Theorem 1.

In the following we study the asymptotic behaviour of solutions of (1).

dt
THeOREM 3. If q()+tp(¢) <O for large 1, J:(T)= 00, jp(r)dr= 0,
1] ]
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ff(t) dt < oo and q(t) is bounded, then all bounded solutions of (1) witha = f
0

=1 tend to zero as t — c0.

Proof. Let |g(t)) < M and q(¢)+tp(t) <O for t >, > 0. Let y(r) be a
bounded solution of (1) such that |y(t)] < K. From Theorem 1 it follows that
y(t) is non-oscillatory. So it is ultimately positive or ultimately negative.

Let y(t) <O for ¢t > t, > t,. If possible, let y'(¢) be oscillatory (or non-
negative Z-type) with consecutive zeros (or double zeros) at g and b (t; < a
< b) such that y’(t) > 0 for te(a, b). Integrating

@y @y O =r@O (" O —gO ' O —pOy©Oy O+ Oy (¢)

from a to b, we get

0= [[rO @) —a@ O —pOyO) Y O+f 0y (©]dt >0,

a contradiction. Let y'(t) <O for t > t, > ¢,. Integrating (1) from ¢, to t, we
get

r()y"(t) 2 r(t)y" (t)— [ q(s) ¥ (s)ds— [ p(s) y(s)ds
lz l‘z
2r(ty)y () +M(p(0)—y(t)—y(ts) [ p(s)ds
'2

21ty (t2)—MK—y(t;) | p(s)ds.
r2

So r(t)y”(t) = L for large ¢, where L is a positive constant. This in turn
implies that y’'(¢t) > O for large ¢, a contradiction. Hence y’(t) > 0 for large ¢.
Consequently, lim y(t) exists. If possible, let lim y(t) = — A, where A > 0.

t—~® t— @

Now, integrating (1) from ¢ to ¢, where ¢ > t, is sufficiently large, we get
t
r(t)y’ () = r(e)y”(@)—y() [ p(s)ds.

Hence y“(t)>0 for large t. Consequently, y(t) >0 for large ¢, a
contradiction. Hence lim y(t) = 0.
t—=m®
Let y(t) >0 for t > t, > to,. Suppose that y'(t) is oscillatory (or non-
negative Z-type) with consecutive zeros (or double zeros) at g and b (t; < a
< b) such that y'(¢) > 0 for te(a, b). So there exists a ce(a, b) such that

y'(c) =0 and y”(t) > 0 for te(a, c). Clearly, y'(t) > y(t)/t for te(a, c). Now
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integrating (1) from a to ¢, we obtain

(o <
]

02 —r(ay’(a = — q(t)y'(t)dt—jp(r)y(r)dt

(Y
a @

c

2 — |[q@0)+1p()]

v
a

a contradiction. If possible, let y'(t) > O for large t. Proceeding as in the case
y(t) <0 and y' (1) < 0 above, we get r(r)y”(tf) < —L for large ¢, where L > 0.
This in turn implies that ultimately y'(¢) < 0, a contradiction. Hence y'(t) < 0
for large t. Consequently, lim y(z) exists. Suppose that limy(f)=A4 > 0.

19 r—w
Now, integrating (1) from o to t, where ¢ > ¢, is sufficiently large, we get
y"(t) <0 for large r. This implies that y(f) < 0 ultimately, a contradiction.
Hence lim y(r) = 0.

t—x®

So the theorem is completed.
EXAMPLE.

0 TR WO M W W
8" T T ETE TR '

All bounded solutions of the equation tend to zero as t— oo. In
particular, y(¢) = 1/t is such a solution.

a ao

THEOREM 4. Ler Jp(t)dr < o, Jf(t)dt = o and
0

0

y(®)

—dt >0,
t

Idz )
J‘m=oo. If qis

0
a®

once continuously differentiable and such that q'(t) > 0 and | q'(t)dt < co, then
0

all solutions of (1) with B =1 are unbounded.

Proof. Let y(r) be a bounded solution of (1) such that |y(7)] < K. Now,
integrating (1) from ty, 2> 0 to r, we get

r(t)y (1) =r(te)y " (to) —q(®) y(D+q(to) y(to) + [ 4’ () y(5)ds
to
— [ p()y*(s)ds+ [ f(s)ds
fo 0
= r(to) ¥ (to)+ Kq(to) +q(to) y(to) — K [ q'(s)ds

fo

—-K° Tp(s)ds+ | f(s)ds.
o o
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So, for 0 <A <1, y'(1) 2’_—% [ f(s)ds for large t. Since { f(t)dt = oo and
to 0

T2 _ % imply that
— =00 im a
o T(t) Py

4 L3

lim J\—l—(jf(e)dﬂ)ds = o0,
toa | F(S)

0 ‘o
we get lim y'(t) = oo. This in turn implies that lim y(t) = oo, a contradiction.

t—*am {—*a

So y(t) must be unbounded.
This completes the proof of the theorem.
EXAMPLE.

| 3
(ty”)’—t—zy'+t-gy3 =12tr, t>0.

All solutions of this equation are unbounded. In particular, y(t) = > is
an unbounded solution.

3. In this section sufficient conditions are obtained for non-oscillation of
solutions of (1) with p(r) < 0. We do not put any sign restriction on g(t) in
some of our results. We begin with the following lemma:

LemMA 5. Consider
(3) (rz) +q(@)z =0,

where r and q are real-valued continuous functions on [0, o©) such that
r(t) > 0. If z(t) is a non-oscillatory solution of (3) such that z(t) > 0 or <0 for
te[a, o0) and if u is a once continuously differentiable function on [a, o) such
that u(b) =0=u(c), a<b <c, and u(t) #0 on [b, c], then

}[r O (1) —q(0) (u(1)*]dt > 0.
b

Proof.
0< Prr”z(t)u’(t)—r”z(t)m]zdr
JL z(t)
b
m 2()(2' (1))’ (r(z @u()

(1)

b
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< c

[ 2 )% 2 Y
= | [r(:)(u'(:))z.;r(;)%]dt_ juz(t)[Q(t)z (t);(:;it)(z (1) ]dt
b b

[r() (' ()" —q() u? ()] dr.

o
b

Hence the lemma.

Remark. If g(tr) <0, then all solutions of (3) are non-oscillatory. For
q (1) € 0, sufficient conditions were given by Moore [9], p 73, Wintner [9], p.
63, and Potter [9], p. 81, for the non-oscillation of all solutions of (3).

THEOREM 6. If (3) admits a non-oscillatory solution, then there exists a
positive increasing solution of (1) with = 1.

Proof. Let z(t) be a non-oscillatory solution of (3). So there exists a
to >t such that z(z) > 0 or <O for t > t,. Let y(t) be a solution of (1) with
y(@ =0, y'(a) =0 and y"'(a) > 0, where a > t,. From the continuity of y” (¢)
it follows that y(t) > 0, y’(t) > 0 and y”(t) > 0 to the right of "a‘ but close to
’a’. We claim that y'(t) > 0 for ¢+ > a. Otherwise, there exists a b > a such
that y'(b) =0 and y'(¢t) > 0 for te(a, b). Clearly, y(t) > 0 for te(a, b). Now,
integrating

PNy 0y (] =r( (" ) =g O =p@ Y @Oy (V+ 0y (1)

from a to b, we get
b
0> f[r@(" @) gy (©)']dt >0

by Lemma S5, a contradiction. Hence y'(¢) > O for t > a. This in turn implies
that y(t) >0, t > a.

Hence the theorem.

THEOREM 7. If (3) admits a non-oscillatory solution, then all solution of (1)
with B =1 and p(t) =0 are non-oscillatory.

Proof. Let z(t) be a non-oscillatory solution of (3) such that z(t) > 0 or
<0fort >ty = 0. Let y(t) be a solution of (1). If possible, let y(t) be of non-
negative Z-type with consecutive double zeros at a and b (ty <a <b). So
there exists a ce(a, b) such that y'(¢) =0 and y'(t) > O for te(a, ¢). Now,
integrating

(4) r@Oy Oy O =r@OF ©OF a0 O +£ 0y ©)

from a to ¢, we obtain

0> ]’[r(r) (" @) —q (' (0)’]dt >0,
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a contradiction. Similarly, it can be shown that y(f) cannot be of non-
positive Z-type.

If possible, let y(r) be oscillatory with consecutive zeros at g, b and a’ (1,
<a<b<da)such that y'(a) <0, y(b) =20, y'(@) <0, y(t) <0 for te(a, b)
and y(t) > 0 for te(b, a’). So there exist ce(a, b) and ¢’ e(b, a) such that
y()=0=y'(c) and y'(t) >0 for te(c, b) and te(b, ¢'). Integration of (4)
from ¢ to ¢’ yields a contradiction.

Hence y(r) is non-oscillatory and this completes the proof of the
theorem.

ExampLe. From Potter’s theorem [9], Theorem 2.36, p. 81, it follows
that the solutions of

(Be ¥ zY+e Mz=0
are non-oscillatory. Hence all solutions of
(Be ¥ y"Y+e ¥y =155¢%

are non-oscillatory. In particular, y(t) = ¢* is a non-oscillatory solution of
the equation. '

THeorem 8. If ©m [f(t)/p(t)]] = —o0 and (3) has a non-oscillatory

t—awm

solution, than all bounded solutions of (1) with B =1 are non-oscillatory.

Proof. Let y(tr) be a bounded solution of (1) such that |y(¢)] < K. From
the given assumption it follows that

f@—=-p@)y* @)= f()+K*p() >0 for t 21,
where 1o > 0 is sufficiently large. So
(r@y" ®) +q@y' () >0
for t > ty. Setting u(t) = y'(r), we get
(r@Ow @) +q@u@ >0

for t > t,. If possible, let y(t) be weakly oscillatory, that is, oscillatory or Z-
type. So u(t) is oscillatory. Let b and ¢ (t, < b < ¢) be consecutive zeros of
u(t) such that u(¢) > 0 for te(b, ¢). Now, integrating

(r@u@u @) > r@ @) =q@©u@)

from b to ¢, we get a contradiction because of Lemma 5. Hence the theorem.
ExampLE. (1) Consider

1
(5) @y -y -ty =dttg—g, 121

. 1 i .
Since all solutions of (r5z')’—r—42 = 0 are non-oscillatory, it follows from the
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above theorem that all bounded solutions of (5) are non-oscillatory. In
particular, y(t) = 1/t is a bounded non-oscillatory solution of (5).
(11) Consider
1

1,1 1
(6) (CyY+gy =y =4 =1

From a result due to Moore [9], p. 73, it follows that all solutions of
1
(t z’)'+t—42 = 0 are non-oscillatory. So all bounded solutions of (6) are non-.

oscillatory.

Remark. Suppose that p(t) # 0. We may note that Theorem 8 cannot
be applied to (1) with 8 =1 when f(t) = 0.

THeOREM 9. If r(t)+ p(t) > O for large t, then a solution y(t) of (1) with
q(t) = O which satisfies (u")>+u*u' > 0 in any interval on which it is negative is
non-oscillatory.

Proof. Clearly y(r) cannot be of non-negative Z-type. Let y(t) be of
non-positive Z-type with consecutive double zeros at a and b. So there exists
a ce(a, b) such that y'(c) =0 and y'(t) > O for te(c, b). Integrating

(7) (r(ny Oy ) =r@(”OF —pMO ¥ Oy O+ Oy @

from ¢ to b, we get

b
0> — [P W) +y* Oy ®)]dt >0,

a contradiction.

Suppose that y(t) is oscillatory with consecutive zeros at a, b and a’ (a
< b < d’) such that y'(a) <0, y'(b) =20, y' (@) <0, y(t) <O for te(a, b) and
y(t) > 0 for te(b, a’). So there exist ce(a, b) and c’e(b, a’) such that y'(c)
=0=y'(¢) and y'(t) >0 for te(c, b) and te(b, ¢'). If y”"(b) <O, then we
integrate (7) from c to b, and if y”(b) = O, then (7) is integrated from b to ¢’
to yield the necessary contradiction.

This completes the proof of the theorem.

EXAMPLE.
1
(2ry”)'—r—2y~‘ =t10-72¢2, t>1.
y(f) = —t* is an unbounded non-oscillatory solution of the equation.

b o} aO d an
THEOREM 10. Let jf(t)dt = a0, J‘Ti) = o0 and jp(t)dt > —o0. If q(t)
0 0 0
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is once continuously differentiable and such that q(t) >0, ¢'(t1) <0 and

@®
[q'(t)dt > — oo, then all solutions of (1) with B =1 are unbounded.
h)

The proof is similar to that of Theorem 4.

© dt <
THEOREM 11. Let r(t)+p(t) > 0 for large t, jm =00, [p(dt> —
0 0

and | f(t)dt = co. If y(1) is a solution of (1) with q(t) = 0 satisfying (u")*+
0

u* u' > 0 in any interval on which it is negative, then either y(t) >0, y'(t) >0
or y(t) <0, y'(r) <0 for large t.

Proof. From Theorem 9 it follows that y(t) is non-oscillatory. So there
exists a to > 0 such that y(t) >0 or <O for t >¢t,. Let y(t) >0 for t = ¢,.

Since (r(t)y” (1)) > 0 for t > t,, it is clear that y’(t) cannot be oscillatory or
of Z-type. If possible, let y'(t) <O for t > ¢t; > ty,. So lim y(f) exists and,

[ Bad- o}

integrating (1) from r, to ¢, we obtain

r@y" () 2 r(t)y’ () =y () [ p(s)ds+ | f(s)ds.
t 1

Hence lim r(t) y”(t) = c0. Consequently, y'(z) > O for large ¢, a contradiction.
I —a

So y'(¢t) > 0 for large .
Let y(t) <O for t > ty. From

ry @y ) =r@ ") -pO YOy O+ OV @)
> —p[(y" () +y* )y O] +1 )y ()
> f()y ),

for t > t4, it 1s clear that y’(¢) cannot be oscillatory or of non-negative Z-
type. If possible, let y'(t) > O for t > t, > t,. Integrating (1) from ¢, to t, we
get

r)y" (1) = r(t) y' () —y2 () f p(s)ds+ § f(s)ds.
n 31

So y”(t) >0 for large t. This in turn implies that y(f) > 0 for large ¢, a
contradiction. So y'(t) < 0 for large t.
This completes the proof of the theorem.

THEOREM 12. Suppose that the conditions of Theorem 11 are satisfied. If
y(i) is a solution of (1) with q(t) = O satisfying (u")> +u* ' > 0 in any interval
on which it is negative, then y(t) is unbounded. In fact, lim |y(t)| = co.

t—a

The proof is straightforward and hence it is omitted.
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