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Remarks on minimax solutions

by V. LAXSHMIKANTHAM and S. LEeLA (Calgary, Canada) *

1. A classical result of Perron is that the maximum solution of
a scalar differential equation can be obtained as the least upper bound
of the family of under-functions m(t) which satisfy the inequality m'(f)
<g(t, m(t)) and the same initial condition.

Similar arguments hold for infinite systems of differential inequa-
lities, provided the maximum solution for a single equation is already
known [3] and an abstract extension of this method has been given in [2].

The existence of minimax solutions for finite systems of differential
equations has been considered in [1]. In this note we modify the abstract
approach of [2] to suit the situation of minimax solutions. As an appli-
cation, we deduce the existence of minimax solutions for an infinite

system of differential equations, thus extending the results of [1].

2. Let E, and F, be two partially ordered sets with the partial
ordering <. We use the same symbol of order relation viz. ‘<’ for both the
sets. Assume that the following conditions hold:

(2.1) w,y,2¢l,, <y, y<z Iimply o<z
(2.2) z,yel,, 2<y,y<woc imply x=y;
(2.3) T,y,2¢F,, T<7, §<zZ imply ZF<F
(2.4) ZTeP,, then ZT<Zx.

Corresponding to the sets E,,F,, let us consider F,,F,, two partially
ordered sets with the dual order relation, denoted by the symbol > and
satisfying conditions (2.1*%) to (2.4*) analogous to (2.1) to (2.4). We shall
use u,v,w and %,7, W to denote elements belonging to FE, and F,
respectively.

Let the operators P,, P, be defined on E,, E, taking values in ¥, F,
respectively. Let the functions @, @, be defined on E, xF, X E,, B, X E,
x E, taking values in F,, I", respectively.

* Qur thanks are due to the referee for his helpful suggestions.
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Consider the simultaneous equations
Py(x) = Q(z, 2, u),
Pou) = Qu®, u, u) .

By a solution o of (2.5) we shall mean the ordered pair (z, u), ¢ F,,
u ¢ H, which satisfies the equation (2.5) simultaneously.

A solution 7 = (&, n) of (2.5) is said to be a minimax solution if, for
every solution w = (#,w) of (2.5), the relations

(2.5)

are satisfied.
We shall say that @, ), possess a mized quasimonotone property
when the following conditions are valid: y,, ¥, ¢ E;, ¥ < ¥, imply that

(2.6) Qu(@y Yy %) < Qul(®, Yoy ¥ weByy uely;
(2.7) Qa(y1;“;”)>Qz(?/2;“a"’)a Uy ¥ € Hy;
Also for u,, u, € H,, u; > u, imply that

(2.8) (Y, n) <@z, ¥, %), @,9 €H;
(2.9) QoY) Uy, 0) = QoY , g, v), YeHi, veh,.
We define the sets

(2.10) U= el Pyo) < Qyw, o, u), well];
(2.11) U,=[u e Ey: Pyu) > Qo(w,u,u), zek].

We now give below the theorem which proves the existence of the
minimax golution of the equations (2.5).

THEOREM 1. Let Py, Py, @, Q, be as defined above. Suppose that @y, Q,
have the mizved quasimonotone property. Assume further that there ewist
two fumctions Z,, Z, defined on By, E, such that Z,(E,) C E,, Z,(E,) C B,,
satisfying the conditions:

P1(Z1(a’)) = Q1(Z1(w)y z, u), e B,

(2.12)

P2(Z2(u)) = Qs(my u, Zu)), weh;
and
(2.13) Pya) < @@, 9,u), Yy,

Py(u) = Quly, v, %), veby;
together imply that
2<Zi(y), = Zy).

Let the sets U, U, defined in (2.10) and (2.11) be non-empty. Then,
(2.14) Zy(B) C Uy, Z(B,)CU,.
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Moreover, the existence of (sup Uy, int U,) implies the exisfence of (sup Z,(U,),
inf Z,(U,)) and vice versa. Also, sup U, = sup Z,(U,), inf U, = inf Z,(T,) and

r = (sup Uy, inf U,)

18 the minimaz solution of (2.5).

We wish to reduce our theorem to Theorem 1 of [2] with the following
interpretation. Consider the set # = F, xF, in which the partial
ordering is as follows:

Let & = (%, u), n = (¥, ) belong to E, where =,y ¢ E, and u,v ¢ E,.
Then, £ <9 1mphes x<<y and u = 0.

Let P(& (P1(a" Py(u ) )) and @ (&, n) = (Ql(‘”: ¥y 0), Quly, v, '“))1 where
P and Q are defined on F and P xF respectively, taking values in F
= F, xF,. The partial ordering for the set F is the same as for E.

Defining the function Z(¢) = (Z,(#), Z,(u)} and the set U = [£ ¢ B:

£) < Q(&, &)], we find that the assumptions of Theorem 1 imply that
P, @ defined as above satisfy the requirements of Theorem 1 of [2] and
the maximal solution of P(§) = @ (&, &) is the minimax golution of (2.5).
The theorem is proved.

3. In this section, we give a more general theorem on minimax
solutions. As an application of Theorem 1, it is natural to consider the
existence of the minimax solution for the system

[
= fu(l, Uyy Upy ooy Up; U1y Vpy e0ny V),  Uilly) =g, 1<i<P,

(3.1) ,
Vi = gs(T, Uy Ugy ooy Up} Vyy Vay oevy Ug), "71(30)=”?a 1<j<gq,

where p, g are arbitrary (may be infinite). The existence of minimax
solutions for finite systems of differential equations follows when p, g
are both finite. The minimax solutions for infinite systems are covered
by the other choices of p and ¢ (either p or ¢, or both may be infinite).
In case p, ¢ are both infinite, the functions f; and g; in (3.1) are to be
interpreted as fif, 1y, Us, .oo; V1) Vgy oo.) ANA gy(T, Uy Ugy ooj Try Vagy on) T€-
spectively.
Let the functions f; and g; satisfy the following assumptions:

(8.2)  fult, Uy, Uy vuvy Ups Vyy Vgy -ovy Vg) BOA go(t, Uny Uny ...y Upj Vyy Vs +ovy Vo)
are defined for te[ty,t,+a] and arbitrary wu,, 4, ..., %, and
Uiy Vgy oevy Vgj

(8.3) there exist constants M; and M; such that
[Fa(, tyy Usy oony Upy Vyy Vyy vy Vg)| < M t e[t fo+a] ,
1G5y Uny Ugy vovy Upy V1y Vay oevy Vo)| < My,

for 1<i<<yp, 1<j<g;
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(3.4) the functions f; and g; are continuous in the sense, that
st wisuw, v (I<i<p, 1<j<q)
imply

fi(t"y uq, Uz, ..., Upj U1y Vay ooy Vg) —>Filty gy Ugy oovy Upj V1, Vg, ey Ug),y
g;(t', 'u,i', '“';7 ey "1';75 '0;, 'D;; ) 'v;)—>g1(t, Uyy Ugy oooy Upj Vyy Vay oeny Ug) H

(3.6) the functions f; and gs possess mixed quasimonotone property, viz.,
for each 2=1,2,..,pand j=1,2,..,4,

(1)  fult, Uy, Upy ...y Up; V1y Vay .., Vg) 18 monotonic non-decreasing
in Wy, Uy ey Wic1y Yis1y -0y Up and monotonic non-increasing
in oy, vg; ..y Vg5

(i) gt wyg,y Ugy ...y Upy V1, Vgy ...y Vg) 18 monotonic non-increasing
in %, Uy, ..., 4p and monotonic non-decreasing in v, v,, ...,
Vj-1y Vj+1y +o05 Vg

Now, we have the following:

THEOREM 2. Assume that the functions fr and g; satisfy the conditions
(3.2) to (3.8). Then, there ewists a minimax solution (u¥(t), 'v}'(t)) of (3.1) on
[toy o +al. Further, if my(1), nyt) are continuous functions defined on
[toy 8o + @] Satisfying the inequalities

milt)) S U3, myllo) = 55
Drmy(t) < f‘(tﬂ My(1) , Ma(t), ..y Map(2); M(E)y Nal(?) ... '”’(l(t)) )
>

DHny(t) = gylt, ma(t), ma(t), ...y Mp(t); ma(8), Ma(t), ..., ng(t))
then,
mi(t) < ui(t), my(t) = 0i(t), telty, to+al.

Proof. Let {p(t)}, {vs(t)} be two sequences of continuous functions
on [y, t,+a] such that
p(l) < wi+Mi(t—1t,), i=1,2,..,p,

pi(l) < ”(1, +My(t—1,), i=1,2,..,4q,
Denote

te[ty, tp+al.

{pd0)} = (@u(?), @2(t) s ooy @alt)) = 3,
{pi()} = ('Pi(t)’ va(t)y .oy %(m =7,

I-‘eg) E,, B, stand for systems of sequences y — {pa(t)}, v = {wy(t)}. If
Yy = {(p{. (t)},. Y =(1 {(p(f)(t)} are two sequences such that if y,, y, € B,, then
¥ <y, implies ¢;"(?) < ¢(1) on [ty, t,+-a] and for each i. Similarly for

¥y g € By, v; > v, means that wg‘”(t) > 1p§2)(t) on [%,, {+a] and for each j.
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Let F, and F; stand for the systems of sequences of continuous
functions on [, %, +a] which take values in the real extended line, the
order relations in F,, ¥, being the same as those in H,, F, respectively.
One can verify that the conditions (2.1) to (2.4) and (2.1*) to (2.4*) are
satisfied. Let us now define the operators P,, P, and the functions @Q,, @,
as follows:

Pi(y) = {D*eu(t)};  Pulv) = {Dryy(t)};
(@, y,v) = f‘(t’ P1(2) 5 ooy Pia(t)y 1(2)y Piga(t), oovy @al(t); Wu(D), ... ) "Pq(t))3
Quly, v, w) = galty 2(8)y -y Polt); P2(0)y oy 1-a(B) Us(B)y Praa(8), -ovy w(B))

Clearly the functions @,, ¢, satisfy the mixed quasimonotone property.
For any pair of sequences {p«(t)}, {ws(t)}, define

Filty ) = Falts @2(8)y voey @ia(t), oy @itr()y ey D)5 10 oovy Wad)) 5
ity €)= Gty Bu(1), -0y @) Balt), oo Vios(8), €1, Praalt), e, alt)
Let, for each ¢, ri(f) be the maximal solution of

r=filt, 1), rit) = u3,
and, for ea.ci:m 7, 04(t) be the minimal solution of
o' =git, 0), est)) = 7.

Since the functions f; and g; satisfy (3.3), the existence of r(t) and o(¢)
on [fy, %, +a] is ensured. Let us now define the functions Z,, Z, by

Zi({p®)}) = {r®)},  Za{{ws(2)}) = {@s()}.

From the basic theorem on differential inequalities, it follows that the
functions Z;, Z, satisfy (2.13). Moreover, the sets U,, U, are non-empty
since uS— My(t—1,) ¢ U; and o] +My(t—1,) € Uy, because of (3.3). Further,

|7i(t) < My  and |es(t)| < M;.

Therefore, the family of functions {ri(t)}, {es;(f)} are equicontinuous and
uniformly bounded. This proves that

sup Z,(U,) = {supri(l)}, infZ,(U,) = {infes(t)}

are continuous on [i;, {, +a].
The assertion of Theorem 2 now follows from Theorem 1.
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