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Oscillation theorems and nodes of eigenfunctions
of certain differential equations of the fourth order

by JAN BOCHENEK (Krakéw)

Introduction. Let G be a bounded Jordan-measurable domain in the
space E™ of m variables X = (#,,...,2,) which can be approximated
by an increasing sequence of domains (f, with regular boundaries (i.e.,
the boundary G, of G, is a surface of class C.; for the definition of the
surface of class C} see [6], p. 132). We do not require any regularity prop-
erties of the boundary of G.

We shall consider a differential equation of the form

(1) & (u)—pu = 0,

where &(u) is a differential operator of the form &(u) = L,[L,(u#)] and
the operators L,(¢) (k = 0, 1) are selfadjoint differential operators, i.e.,

nn) = = 3o [ ]+q(xw (k =0,1),

u being a real parameter. We make the following assumptions: a{?j(X)
=al(X) (4,j =1,...,m) are of class C** in G (k =0, 1) F(X)=0

are of class C** in @ (k = 0, 1), and quadratic forms Z af(X) & &
(k = 0, 1) are positive definite in G. Gi=1

We shall also consider the generalized boundary condition (cf. [1], [3])
which in the case where the boundary 0G is regular may be written in
the form

(2) Bi(¢f) =0 on 0@ (k=0,1); ¢(X)=u(X),
¢ (X) = Lo(u),
where R, (#) = 0 on 0G means

d
(3) % _K(X)u =0 on 9G—T,, uw—=0onT, (k=0,1)
k

and I', denote .(m —1)-dimensional parts of 0G (I, being connected or
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not); in extreme cases I, may be the whole boundary of G or the empty
set. Here h*(X) (k = 0,1) are non-negative continuous functions in G,
and dg/dv, (kK = 0,1) are the transversal derivatives of ¢ with respect
to the operators L, (k = 0, 1), respectively, i.e.,

m

dy X g
._._E' k(X)) —2- . E=0,1
v, P g ( )aw,- cos(n, x;)  ( , 1),

n being the interior normal to JG.

1. The oscillation properties of solutions of problem (1), (2). We
make the following assumption:

ASSUMPTION A. No solution u(X) of equation (1) can vanish identically
in any subdomain of domain G if u(X) #£0 in G. '

Let #(X)e C*(@) N L?*(G) be a solution of problem (1), (2) with u > 0,
and u#(X) # 0 in G. Let us write
Gt ={X: Xe@G, u(X) >0},
G ={X: XeG, u(X) <0},
@ ={X: Xe@G, u(X) = 0}.
We shall prove the following

THEOREM 1. If I', is mot the empty set or if the function h*(X) >0
in G, then every meighbourhood of any point X,e G° contains points of G*
and of G~, or @° is empty.

Proof. Let us suppose that G° and G* are not empty sets, and let

w(X) for XeGH,
U(JY) = — —
0 for Xe G -G,
1t is evident that the function U(X) satisfies equation (1) for X ¢ G*, i.e.,
(4) E(U)—pulU =0 for XeGt.
Since U(X)e L*(G)NC(@G), equation (4) may be written in the form
(5} ¢(U)—pL, [K(U)] =0,

where K is the inverse operator for the restriction of operator L, to the
function space #p r (@) (}). The existence of operator K follows from
the assumptions of Theorem 1 (cf. [3]). Equation (5) takes the form

L,[Ly(U) —puK(U)] = 0.

(1) For the definition of the function space ?hl’]@t(a) sce [1].
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Fromn this follows
(6) Ly(U)—puK(U) =0 for XeGt.

As we know (cf. [3]), K(U) = 0 for X G. Since u > 0, if we write equation
(6) in the form

(7) Ly(U) = uK(U),

then we see that the right-hand side of (7) is non-negative.

Suppose that X,e¢G° i.e. U(X,) = 0, and that in some neighbour-
hood of X, all points different from X, belong to G*. Since U(X) > 0,
it follows that the function U(X) attains its infimum equal to zero. But
this is at variance with the well-known theorem of E. Hopf (cf. [5]).
The case where in some neighbourhood of X, all points different from X,
belong to G~ is reduced to the previous one by change of sing of the
function u(X).

Under the assumnptions of Theorem 1 and by this theorem we have
the following statements:

COROLLARY 1. The set G° does mot contain isolated points.

COROLLARY 2. The set G° divides the domain G.

COROLLARY 3. Every point X e G° is the “osicillation point” of u(X),
i.6., in every meighbourhood of X, the function u(X) changes its sign.

A simple consequence of Corollary 2 is

COROLLARY 4. The dimension of G° is smaller by one than the dimension
of G, t.6.,, dimG® = m —1.

2. Eigenvalues and eigenfunctions of problem (1), (2). The object
of the following considerations are some properties of zero points (nodes)
of the eigenfunctions of problem (1), (2).

DEFINITION. We shall say that a real number 2 is an eigenvalue of
problem (1), (2) if there exists a function w(X) # 0, u(X)e Z*(G) NC* (@)
and satisfying the boundary condition (2) (in a generalized sense) and
equation (1) with z = A. This function «(X) we shall call the eigenfunction
of problem (1), (2) corresponding to the eigenvalue 4.

Besides problem (1), (2) defined in the introduction, we shall copsider
the equation

(8) Ly(u) — pK (u) = 0
and the boundary condition
(9) Ry(uw) =0 on 96,

where K in equation (8) is the operator defined in Theorem 1.
The properties of the operator K are discussed in paper [3].
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The eigenvalues and eigenfunctions of problem (8), (9) are defined
as in paper [2].

To avoid any mistake we shortly recall this definition. To this end
we write

(10) D(q, v f[Z aj;(X) ——A~’+q X)W] aX+ [ WgpdsS,

aG=r,

(11) H(pyy) = [ oK (y)dX = (¢, K(p)).
o

The bilinear forms (10) and (11) are defined in the space £ (for the defi-
nition of the space 2 see [1]) and have all the fundamental properties
mentioned in [1].

The first eigenvalue A, of problem (8), (9) is defined as (comp. [1],
(2], [4D

(12) A, = min -
tp£°9

D(yp)
H(p)’

where £ is the subclass of £ of functions ¢ such that ¢ = 0 on I’y (in the
generalized sense), and the first eigenfunction u,(X) is that ¢ at which
the minimum (12) is attained.

Having defined the eigenvalues 4,,...,2, and the corresponding
eigenfunctions u,,..., u,, we put

D(q)
13 Appr = Min-
( ) +1 fpeJl’ H((p)

where ¢, is the subclass of 2 consisting of the functions ¢ satisfying
the orthogonality conditions
(14) Hg,u) =0, ¢t=1,...,mn,

and u,,;(X) is that ¢e %, at which the minimum (13) is attained.
We shall need the following assumption:

Hyroruesis Z. Given (8) and (9) there exists a sequence of eigenvalues

of (8), (9)

(15) 0 h<hs<s
and a corresponding sequence of ezgenfunctwns
(16) uy (X), uy (X)), s (X), ...

which belong to F.
In the sequel we shall use the following formula:

(17) D(q,zp)—fL (¢)pdX + f (—-——h° )dS =0

Vo
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for every ge# and pe &. The proof of formula (17) is quite similar to
that of an analogous formula in [1]; see also [2] (2).

LEMMA 1. The function w(X) 2 0 in G and u(X)e L2(G)NCHQ) is
an eigenfunction of problem (1), (2) corresponding to the eigemvalue A if
and only if the funclion u(X) is an eigenfunclion of problem (8), (9) corres-
ponding to the eigenvalue A.

The proof of Lemma 1 is given in [3].
Lemma 1 and Hypothesis Z imply the following

COROLLARY 5. If the functions of sequence (16) are of class C*(G),
then these functions are eigenfunctions of problem (1), (2) corresponding to
the eigenvalues of sequence (15).

Under some additional assumptions sequence (16) is a complete
system in Z2%(@), and then sequence (15) contains all the eigenvalues of
problem (1), (2) (comp. [3]). .

It follows from the definition (variational) of «,(X),n=1,2,3,...,
that
(18) H (u; ) =0 P

20 ifi =3,

On the other hand, as we proved in [3], the first eigenfunction u,(X)
of problem (1), (2) does not vanish at any point of domain G. From this
and from (18) it follows that all eigenfunctions u,(X) (» > 2) change
their sign in ¢. And since the functions are continuous, there exist zero
sets in G for these functions. Because every eigenfunction u,(X) (n > 2)
satisfies equation (1) with u = A, > 0, it follows by Theorem 1 that for
n > 2 the zero set GY of eigenfunction u,(X) (the nodes of the eigen-
function u,(X)) has all the properties mentioned in corollaries 1, 2, 3
and 4, provided that I'; is non-void or A'(X) >0 in G.

In virtue of Corollary 2 the set G° (n > 2) divides G into the so-called
nodal domains of the eigenfunction w,(X).

3. Estimation of the number of nodal domains of the »-th eigenfunction
of problem (1), (2). Under the assumption that I, is non-void or A'(X) > 0
in G, we have shown in section 2 that the nodes of the eigenfunction u,,(X)
(n > 2) divide G into nodal domains. In this section we shall estimate
the number of nodal domains of the function %,(X) depending on m,
provided that /", is non-void or A'(X) >0 in G.
- At first we shall prove the following

LemMMA 2. Under Hypothesis Z, the nodes of any function u(X) % 0

() For the definitions of the function spaces 2, 9}, & and F), r(G) see[1] and [2].
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in G and u(X)e .Z’Z(G)n()“(G) satisfying (1) with u < A, and boundary
condition (2) divide G into less than n nodal domains.

Proof. It follows from Lemma 1 that the function «(X) satisfies
equation (8) with x < 4, and u(X)eé’*"ho,,-o(G). Suppose the nodes of u(X)
divide @ into subdomains &,, G,,...,G,. Put

w(X) in Gy, .
(19) U, = R T
0 in G—Gi,

1t is obvious that U,, ..., U, are linearly independent in G. Put

I'X) = Za’i Uy

=1

where a,, ..., a, are real numbers such that a4 ... i a® >0, and the
funetion F(X) is orthogonal to u,, ..., u,_, with respect to the functional
H. The function F(X) belongs to 2, ; thus by (13)

(20) D(F) = 2, H(F).

On the other hand, each function U; (i = 1,...,n) satisfies the
equation

(21) Ly(U) = uK(U;) for XeGy i =1,...,nm.

Multiplying both sides of equation (21) by U; (1 < j < n) and then in-
tegrating over G, we have

(22) D(U;, U) = uH(U;, U)), 4,j=1,...,m.
Further, multiplying both sides of (22) by a;a;, and summing, we get
(23) D(F) = uH(F).
In virtue of (20) and (23) we have
LH(F) < D(F) = uH(F).

Thus 4, < u, which contradicts our assumption.

LEMMA 3. Under assumption Z, if A, =4, = ... = Appoq1 < Ay
(i.e. %, 18 an s-fold eigenvalue of (1), (2)), then the nodes of each function
u(X) £0 in @ and w(X)eFy r (G)CHE) satisfying (1) with p = 4,
divide G into at most n domains.

The proof of this lemma is quite similar to the proof of an analogous
lemma in [1] and is omitted.

Lemmas 2 and 3 imply the following

THEOREM 2. Under Assumption Z, if N(n) denotes the number of
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nodal domains of the n-th eigenfunction of problem (1), (2), then for each n
we have

(24) N(n) < n,

the equality occurring only when A,_, < 4, (see [1]).

THEOREM 3. Under Assumption Z, if 1; < A;, then in each nodal sub-
domain of u;(X) there are nodes of the eigenfunction wu;(X).

Proof. Let G; be an arbitrary fixed nodal domain of «,;(X), and let

u; for Xe@y,
0. for XeG-G,.

i frned

The function U, satisfies equation (8) with u = 4; in the subdomain G,
i.e.,

(25) Ly(U;y) = A K(Uy), XeG;.

Multiplying both sides of equation (25) by %; and then integrating both
sides of this equation over G;, we get

_ au;
(26) DUy wy) = AHiluy, U — | 7% uyas,
’ I',i d"'
where D; and H; are defined as bilinear forins I) and H, respectively,
by integration over the subdomain @,;, while I'; denotes that part of the
boundary of G; which is composed of nodes of u,.

On the other hand, by applying (17) to u;, U;, we have
D(u;,Uy) = LH(U;, uy).
Since U; =0 in G—G,, the last equality takes the forin
(27) Di(ujy Uy) = 2, Hy(Us, uy).

It is evident that D;(u;, U,) = D;(U,;, u;), whence by (27) we have
H,(u;, U;) = Hy(U;, w;). From this and from (26) and (27) we get

(28) (A — ) Hy(Uyy u;) = f w2l

i q
7
r; 0

Suppose #; >0 and %; >0 in G;. Then the left-hand side of (28)
18 positive. On the other hand, the transversal goes into the interior of G,
([6], p. 163), and so dU,/dv, = du,[/dvy> 0 on I';. Thus the right-hand
side of (28) is non-positive, whence a contradiction. Analogously, we arive
at a contradiction when assuming any other possible combination of the
signs of u; and w;." Therefore u; has to change its sign in G;.
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Remark 1. All the results of this paper may be generalized without
essential changes to the case of a more general equation of the form
(29) LP[Lo(w)] — pu = 0,

where p is any integer and L,, L, are the operators defined in the intro-
duection to this paper, with the boundary conditions

(30) R,(u) =0 on 0@, R,(¢*) =0o0noG@ (k=1,...,p),
where ¢* = Lo(¢*™"), k=1,...,p, ¢* =
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