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Concerning solutions of an exterior boundary-value
problem for a system of non-linear parabolic equations

by P. BESALA (Gdanisk)

In paper [2] we have considered Fourier’s first problem in an un-
bounded domain for the system of equations

dug ous %,
(0.1) R s(wvt’ u"a_w‘,-’m ’
8,4=1,...,n, J,k=1,...,m, x= (2, ..,%n).

We have proved in it certain uniqueness and existence theorems for
solutions of this problem as well as a theorem concerning inequalities
between the solutions of two systems of the form (0.1). In the existence
theorem we have assumed the existence of a solution of a suitable problem
in bounded domains. Using the same method as in [2] we discuss in the
present paper theorems analogous to the mentioned above but concerning
an exterior non-linear boundary value problem for (0.1) (}). In proving
these theorems we refer to fragments of the proofs in [2].

Theorem I of this paper constitutes a generalization of a well known
theorem proved by M. Krzyzanski [3] for one linear equation with bounded
coefficients and for a linear boundary condition. Theorems analogous
to I and II have been established by J. Szarski [6], [7], [8] in domains
whose intersections with planes ¢ = const are bounded. W. Mlak [5]
has proved a theorem similar to II for strong inequalities in a bounded
domain.

The author expresses his sincere gratitude to Professor M. Krzy-

zanski and Professor J. Szarski for their helpful advice and remarks
concerning this paper.

§ 1. Let 4 be a bounded and closed domain of the m-dimensional Eulic-
dean space €™ of the variables x, ..., z,, and let § be its complementary
domain. As in [3], the boundary FA4 of 4 is assumed to be represented
by the equation
(1.1) I'z)=0,

() These results without the proofs have been included in [1] (part 2).
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where I'(z), = (2;, ..., Tm), i8 a function with continuous and bounded
derivatives of second order in the domain 8, while it is of class C! in the
closure S and satisfies the condition

(1.2) lgradI'(z)| = I, > 0.
We define

(13) D"=8x(0,h), " =FAx(0,h), O0<h< + co.

The functions F,(z,t, ¥;, 2;, 2;z) appearing on the right-hand side
of (0.1) are assumed to be defined for (x,?) ¢ D" and arbitrary v, 2;, 2jx
(t=1,..,n;j,k =1, ..., m). The following definition given by J. Szarski
is used here: the s-th equation of (0.1) is said to be parabolic with respect
to a sequence of functions w,(x,t), ..., wa(x,?) of class C! if for every
two systems of numbers 2., Zix (j,k=1,..,m), 25 =2k, Zjr = Zxj,
such that the quadratic form

2 (2% — Zjx) A5 Ay

7:k=1

is non-positive for arbitrary %,, ..., 4,, the inequality

owg(x, t owy(x,t) _
Fs(wy t, wi(z, t), %; zilc) _Fs(ma t, wix, 1), 83(—:”.’)"9 z:ik) <0
7 7

is satisfied. If every equation of the system (0.1) is parabolic with respect
to a solution u;(z, t) (¢ =1, ..., n) of this system, such a solution is called
a parabolic one.

Let @iz) (i =1,...,n) be arbitrarily given functions defined and
continuous for z ¢ 8 while Gy2,?, Yy, ..., %) (8=1,...,n) are defined
for (x,t) e o* and arbitrary v,, ..., Ya.

For every (z,t)ec* and every s (8= 1,...,n) let I; be a straight half-
line entering the interior of D" (at point (z, t)) and parallel to the plane
t = 0. The existence of a positive constant y, such that

(1.4) cos(l;,mg) =y, (t=1,...,n) for (z,t)eoh

is assumed, n, being the normal to ¢" directed to the interior of D"
The problem which we will call (F) consists in finding a parabolic

solution wuiz,%) (¢ =1,...,n) of (0.1), regular in D" () possessing the

derivatives du,/dl, at points of % fulfilling the initial condition

(1.5) Uz, 0) =gi(z) (t=1,..,n) for =zeS

() Le. continuous in the closure D" of D*, possessing the derivative aal; and
ou, du,

continuous derivatives 57," om;0m; (6=1,..,n;j5,k=1,..,m)in D*.
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and the boundary condition

ds .
(1.6) di{‘+Ga(m,t,u1,...,u,.)=0 (s=1,..,n) for (z,t)eo™.

We will say that the function Fy(z,?,y;, 2, ;) satisfies the (L)~
condition if there exist positive constants L,, ..., L, such that for arbitrary
Yiy %59 %jks Yz -Z.j, Zik (‘D = 1, very Ny j, k= 1, ey M), Ys = ya, we have the
inequality

Fo(x, t, yiy 25, o) —Fo(@y T,y Yy %5 Zji)

<L ) |u—2l + kel +Lo) Dl —%| +(TslalP-+LZg) Y [y~

7 =1 Je=1 =1

m
where, as usually, |¢] = (D «3)"*. Further, the function Gy(z,t, ¥y, ..., ¥s)
&

is said to satisfy the (.2)-condition if there is a positive constant L
such that for arbitrary v;,%; (¢ =1, ..., n), ys > ¥s, the inequality

Go(Ty 1y Y1y ooy Yn) — Go(@y 8y Gy ovy Yn) <L2 |%¢ — ¥l
i=1

holds.

By E,M, K) or shortly E, we denote the class of functions y(z, ?),
defined in an unbounded domain, for which there exist positive con-
stants M, K such that the inequality

ly(z, ) < Mexp(K |x?)

is satisfied in this domain.

§ 2. THEOREM 1. If the functions Fs and G, (s =1, ...,n) fulfil the con-
ditions (L) and (L) respectively, then the problem (F) has no more than
one solution of class E, in the domain

Proof. Let us take two arbitrary solutions u{" and u{” of the prob-
lem (F) belonging to E, in D*. We shall show that

ugguﬁ”—u?) =0 (i=1,..,n).

From the definition of class E, it follows that there exist M, K, > 0
such that

(2.1) lug] < Mexp(Eylz®) (i=1,..,m) for (z,t)eD".
It may be assumed that

(2.2) I'x)=|z] for |z|>R,,

Annales Poloniei Mathematicl XIV 19
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where R, is the radius of a sphere |r| = R, situated in £™ and containing
the- boundary FA in its interior. From that and from the assumptions
of §1 it follows that there exist 4, B> 0 such that

m m -
(2.3) | X mw|<4, |Yr@|<B ms.
=1 7.k=1
We shall make use of the function

24) Hio,1; K) = expl EL@ —p(K)F

+v(K)t}, K> K,,

1—u(K)?
constructed by M. Krzyzanski [3], where
nL+1
(2.5) p(K)= IKTp.
(2.6) u(K) = 4KL,A*+2L, A +EIQK—“ ,

and

+2KL,A® +Lypi*n +Lyn 41

7 ’

[EL B+ KA (L By +L,)I' + 2KL, A* + n(Ly Ry +L,) + 1}
72 ’

y being arbitrarily choosen from the interval (0,1).
~ First, we shall give the proof of the theorem for the part Dh = 8x
x (0, hy> of D", where

‘ 1y
e =
Write
29) YH(wx,t; K)

m
Y

Fike=1

@H
0 0Ty

o
ot~

1 |oH
|+ Talol +2) D) |32 |+ Talolt + ZaymE
j=1

We shall show that the function H(x,¢; K) satisfies the following
inequality

(2.10) FH(z,t; K) < —H(z,t; K) for (x,t)eD".
Indeed, (2.8) yields:

(2.11) O<y<l—u<1.

Taking advantage of (2.4), (2.3) and (2.11) we get

212) FH< ﬁ, (4L, A(I'—p)t + 2KL, A%+ 2K BL,\I'—p| +

+ (Ly|2| + L) 2K A |I'—p| + (La|w|* +Le)n — pK(I'—p P —vp*} .
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If || > R,, then in view of (2.2), the inequality |2| < [l:t| —pl +p and (2.6)
we obtain
H
FH < A=ty { - ”‘-’”I —Pl —(KL,B+pKL, A +'"'PL3)]2+
+ (KLyB +pKL, A + npLy)? + 2K Lo A2 + np:Ly + nL,— vy?} .

Hence by (2.7) we get (2.10).
If |z] < R,, then from (2.6) and (2.12) it follows that
H
FH < (1_—,“)3{"[|F—Pl—(KLoB+KA(L1Ro +L~z))]2+

+(KELyB+KA(L Ry + L,))* + 2KL, A* + n(Ly Ry + L,) — vy} .

By virtue of (2.7) we see that now inequality (2.10) is also verified.
Further, we substitute

(213) u" =v{’H(z,t; K), u® =vPH(z,t;K) (i=1,..,n).

(1) (2)

Putting v; = v;' —v;" we have

(2.14) w; = v, H(z, t; K) .

Let us choose an increasing sequence {R,,}, R,> Ry, R,—>o0c0 as
a—>oo. The part of the boundary of domain D" lying on the plain ¢ = 0
will be denoted by §°. Furthermore, denote by DM and §° the parts of
domains D™ and §° respectively contained inside the cylindric surface Y,
with the equation |#| = R,. Put C* = D"} .. We will consider the
sequence with the terms

A, =max max [v(z,t)] (a=1,2,..).
@ (x, t)eDh"

From (2.14) it follows that the theorem will be proved if we show
that A, = 0 for any a. Observe that the sequence {4,} is non decreasing
and A4, > 0 for every a. Therefore it suffices to prove that 4,—0 as a—oo.
For this purpose notice that for any a there exists an - integer ¢, and

a point (Zq, t,) eﬁ_ﬁ" such that A, = |v; (%, t.)|. A priori the following
cases are possible:

1) Ty ta) €85,  2) (Xayte) € DI, 3) (Tayla) € 0™, 1) (To,ta) e OB

Evidently in case 1) 'vga(w,,, ta) =0 and 80 A4, = 0. In case 2) we have
either 2°) v;,(%q, f;) = 0 Or 2') v;,(®s, 1) > 0 or 2') v (@,, 1) < 0. Case 2)
means that 4, = 0. If 2’’) holds, then the same reasoning as in the proof
of theorem I of [2] leads to the inequality

a’”‘q(ma ) ta

(2.15) 0< e )H(mca ta; K) < 04,(%4, 1) FH (%ay ta; K)

19+
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and thus, by (2.10), we prove the impossibility of case 2’). Case 2'"')
may be, as in [2], reduced to 2'’) by the substitution ¥ = —uv;.

In case 3) we have: 3') v;(x,, %) = 0, which means that 4, =0
or 3") v (%, 1,) > 0 or 3"’) v;(%,, %) < 0. If 3") holds, then

vy, (2, ta)

(2.16) i

<0,
since in the contrary case there would exist such a point (z,, ) lying
in the interior of D™ that Vig(Toy tp) > V4,(%a, t,), and this contradicts
the definition of v; (., 1,).

On the other hand, by (1.6), (2.13) and (2.14), we obtain

dH
%H-Fophdl + G¢y(@ay tay 'vu)H oy ‘US)H) — Gy (@) Uy 'v(z)H ) 'vg)H) =0,

whence, according to the (£2)-condition, we get

d'v;a dH dH
(2.17) ToH < g +L% |0y H <”‘¢(dl +LHn)
The sign of I'(z) in equation (1.1) may be chosen so that
or
(2.18) = |grad I'(z)| cos (x;, n,) .

6:1:
Therefore, on account of (1.1), (1.2), (1.4), (2.5) and (2.17) we derive

dﬂia —2Kp
_WH < 'D;aH(lT”t; Igradl’lcos(n.,, l{a) +’":L)

ta

< 0 H(—2KpTyye+nL) = —v,H <0,

which contradicts (2.16). Repeating the same reasoning for the function
v, X —1v;, one may show that case 3’"’) is also impossible. Therefore,
in each case 1)-3) we have A, =0.

In case 4), by (2.1) and (2.14), we obtain

Mexp(Kolzal’) _  Mexp(K,Rq)

0 as a—>oo.
K(I—p)? K(R.—p) g
exp 1(__ f) +vt} exp{ i* tp)+t}

I'via(wu ’ ta)l =

From the previous considerations it follows that the last inequality holds
for all cases 1)-4). Consequently 4,—0 as a—oo0, q.e.d.

If 7> h,, then the change of the variable t =7+jh, (j =1,2,...)
enables us to prove the theorem successively for the parts of D" contained
in the zones: jh, <t < (jL+1)h,.
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§ 8. Let us now take a system of functions ye(#yy ..., ¥s,7) (8 =1, ..., %),
where 7 denotes a sequence of variables different from y,, ..., ya. We
will say that the function y, fulfils the (W)-condition with regard to
the variables y,, ..., yn if for y; < 7%, © #8, ¥; = ¥,, we have

Xs(Y1s ooy Yny T) < X1y ooy Yy T) -
THEOREM II. If
1° u®M(@, 1), uP(z,t) (=1, ..,7n) are regular solutions of class E,
in D" of the systems of equations

a'us 1)( a U, 5 32%()1)) _

(3.1) > = F! , ud, aw ¥ (8=1,..,7n),
3’"f£ 2)( (2) 3%(;2) 32 g

(3.2) - = FNo, t, u®, T aa;,amk (8=1,..,m),

respectively,

2° for each s (3 =1,...,7n) the equatwn with index 8 of system (3.1)
is parabolic with respect to the sequence u(’(x,1), or the equation with the
same index of system (3.2) is parabolic with respect to the sequence uz’(w, 1),

3° for each s the function F or FO satisfies the (W)-condition with
respect to the variables vy,, ..., yn and the (L)-condition,

4° Fgl)(wy by Yiy 2y %in) < F;z)(w, by Yoy %y %) (8 =1,..,m) in the do-
main of existence of these functions,

5° u(z, 0) < uP(w,0) (i =1, ...,n) for ves,

6° the functions u(z,t) and u‘z’(w, t) fulfil the boundary conditions

@

(3.3) d;{ +@ (@, t,ul, .., 4 =0 (8=1,..,m) for (w,t)e a,
@)

(3.4) d;‘l‘ + Gz, 1, ) =0 (8=1,..,m) for (w,t)ed”,

respectively,

T GO@, b, Yy ooy Yn) S GP(@y 8y Yiy oy Yn) (8 =1, ooy m) for (@, 1) € O,
— oo < Y; < + oo,

8° for each 3 (s = 1, ..., n) the function G or @2 fulfils condition (L)
and condition (W) with regard to the variables vy, ..., Yn,
then the inequalities

uz, 1) < uP(w,t) (i=1,..,m)

are satisfied everywhere in D".

Proof. The functions «{" and u” belong tothe class E, 1nD“ therefore
there exist M, K,> 0 such that (2.1) is satisfied for u; = & Ny,
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We shall give the proof of theorem IT for the domain D™ defined in the proot
of theorem I. If h> hy, then the change of the variable =7+ ]k,
(j =1,2,..) enables us to prove the theorem for the whole domain D".
Furthermore, we shall restrict ourselves to the case where all the equa-
tions of (4.1) are parabolic (with respect to u{”(x, t)), all the functions F®
satisfy the (2) and the (W)-conditions and likewise all the functions G*¥
satisfy the (£2) and the (W)-conditions. The reasoning in the other cases
is similar.

We retain here the notation introduced in the proof of theorem I.

Using transformations (2.13) and (2.14) we denote

A, = max max m(m 1).
“ (z.t)eDh"

The theorem will be proved if we show that 4, < 0 for any a. For every a

there exist an index ¢, and a point (z,, ¢,) D"" such that 4, = Vi (Zay ta).
Consider the cases:

1) (wa’ ta) € Sg ? 2) (may ta) € D«’:o ’ 3) (was ta) € Uho ’ 4) (wm 1) € 0::0 .

In case 1) we infer by assumption 5° and relation (2.14), that 4, <0
In case 2) we have: 2') v4(%,, t,) < 0 or 2”) v;,(%,, {;) > 0. 2’) means that
A, < 0. When 2”) holds, then the same reasoning as in the proof of theo-
rem II of [2] leads us to inequality (2.15), where FH is defined by (2.9)
and, as was shown in the proof of theorem I, FH < —H < 0. This con-
tradiction shows that case 2’’) is impossible. In case 3) the inequality
04(Z, t.) < 0 means that 4, < 0. Suppose now that v (z,, 1) > 0. From
the definition of vy (w,,?,) it follows that inequality (2.16) is satisfied.
On the other hand, by (3.3), (3.4), (2.13) and (2.14) we get

(3.5) g’;‘aﬂ'}' hﬁ +G(1)(w¢, ta;'vl a”nH)—

— G‘”(m,, i, 0WH, ..., vWH) =0.
By virtue of assumption 7°
(3.6) Gfa(wc’ lay ”il)H 'K mH )— Gm(“’ar lay ‘IJ{!)H P '02 D )<0

Let g (1 < ¢ < n) denote the number of those functions among v,, ..., vs
which assume a positive value at point (z,, ¢,). Without loss of generality
it may be assumed that these are the functions »,, ..., v, (thereby 4, < gq).
According to the (W)-condition we get

(3.7) G2 (@) tay ¥OH, ..., 0P H, 0L H, .., o H) —

(2 1 1 2 2!
N @y tay OWOH, ..., O H, 00 H, ..., v H) < 0
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By virtue of condition (£2) we derive

fvfa dl + @2 (@, tay oV H, ..., o H, 0¥\ H, ..., o@H)—
(3.8) — QP (@, 10, VOH , ..., oOH, 031 H, ..., D H)

- [
aH dH
<v;, — +1L H Loy \-—+nLH).
'Dadlia + g I'Uil v"(dl,a-l-” )

But in view of (1.1), (1.2), (1.4), (2.5) and (2.18) we have, as in the proof
of theorem I,

% +#LH< -H<0.
Now adding (3.8), (3.7), (3.6) we obtain, by (3.5), dv;/dl,> v;,>0
which contradicts (2.16). Thus we have proved that 4, <0 in each of
the cases 1)-3). In case 4), by (2.14) and (2.1), the following relation
is satisfied

T Mexp (K, R;)

Ae S R (R.—py o
1—pt, ’

-0 as a—>00.

exp

Thereby this relation holds for the cases previously considered. On the
other hand the sequence {4,} is non-decreasing. Hence we conclude that
for every a, A, <0, which completes the proof.

The corollary inserted in [2] concerning the weakening of the
(£2)- condition is also true here relating to theorems I and II.

§ 4. Using the notation of § 2 let us put

= l—y
(4.1) R=max(Ro,p(K)), hl=m, 0<)’<1, k0>0'

1. /aL¥1
LEMmA. If K > 3 AL,

and k, > 0, then the inequality

holds for |x| > R, (z,1) e D™ (see (1.3)).

Proof. By (2.5) we have p(K +%,) < p(E). Hence and from (2.2)
we deduce that [I'(2)—p(K)P <[[(z)—p(K+k)? for |z|> R. By
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virtue of (2.7) »(K +ky) > »(K). Owing to (2.6), for E>% ”ﬁrl,
we obtain u(K +k,) > u(K). Consequently ’
H(z,t; K)
H(z,t; K+k)

{K[P—P(K)]“‘ _K[I—pK+k)P KI—p(K+k)F
1—p(K)t 1—p(K + ko)t 1—u(K +k)t

+ [ () — 7 (K + ko))t}

< exp

k[ I'—p (K 4 k)]
1—u(H + ko)t

< expf- < exp{— kI~ p (X + )T}

Now let @y(x,?) (i =1, ...,n) be arbitrary continuous functions of
class E, in D™ and let G,(z,t,y,, ..., ¥s) be given functions defined for
(w,1) e ™, — co <y; < + oo, and fulfilling the (2)-condition.

Take an increasing sequence {R,}, R,> R, R,—~oco as a->oo.

THEOREM ITI. If

1° for arbitrary Dy x,t) continuous in D™ and for every a there exists
a parabolic solution wugi(xz,t) (¢ =1,...,n) of (0.1), reqular in DM and
fulfilling the conditions

(4.2) wi(z,t)=Dz,t) (i=1,..,n) ontheset L+ ok,
dug
dls

(4.3) G, t,ul, ., ul) =0 (8=1,..,0) for (v,t)ed™,

2° the fumctions F, and G, (s =1, ...,n) satisfy the conditions (L)
and (2) respectively,

3° the fumctions Fy(z,t,0,0,0) belong to E, in D™ while g,(z,?)
& @,(x,t,0,..,0) are bounded for (z,t) e o™,

4° @ix) are given continuous functions of class E, in S;
then the problem (F) (for h = h,, see § 1) possesses at least one solution
and this solulion belongs to E, in DM,

Proof. First, we shall prove that the sequences {uj(x, t)} (1 =1, ..., n),
a—>oo (see assumption 1°), are almost uniformly convergent in D™. For
this purpose let us choose continuous functions @;(z, t) of class E, in D™
8o that Dz, 0) = ¢i(x) for xS (1 =1, ...,1n).

It may be assumed that the functions ¢;(x), @;(x, t) and Fy(z, ¢, 0, 0, 0)
(¢ =1,...,n) belong to the class E,(M, K,) with the same constants M
and K,.

We introduce the substitution

(4.4) ui =viH(x,t; K) (t=1,..,n),
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where H(z,1; K) is given by (2.4) with

(4.5) K = max (Kn, %]/ ”Jj’_l_jzl) .

For an arbitrary fixed a let ¢, and (x,, %) be an integer and a point re-
spectively for which

A, £ max max [v](z, t)| = [0},(Za, t)]
@ (z,t)ep"l

and consider the following cases:

1) (@, t,) e D™. Making use of the property of function (2.4) one
can prove, as in the proof of theorem III included in [2], that for this
case

(4.6) |05,(%ay t)| < M,

M being a constant appearing in the definition of class H,(M, K,).

2) (%, 1.) € 82+ C¥. Now from (4.2) and (4.4) we derive (4.6);

3) (%a, t,) € ™. Suppose v} (x,,1?,) > 0. By (4.3) and (4.4) the func-
tion v, satisfies the boundary condition which may be written in the form

dv; o dH a a
dl:aH = "“'TJTZ,"L Giy( @y tay 1 H, ..., v H)—

G (%4y %, 0,0, ...,0)+ G (24, 0,0, ..., 0) .

According to the (£)-condition we have

d’l’?a a adH - q
— g <o D D) WHE 4 g(ee )

iml

and hence, by (1.1) and (2.18) we get

v 2K ia\La s ta
dlta < 'via[ 1= 2 |g1'a'dl1 | o8 (72qy L) + ’"'L] g————( H, )

By our assumption g,—a(w, t) is bounded. We may assume that g¢; (%4, ,)/H
< M. Furthermore, relations (1.2), (1.3) and (2.5) yield

it .
d’l’ﬂ o (—2KpTyyy+nD)+ M < —v& + M .

On the other hand dvj,/dl;, <0. Hence we deduce that o, < M. If
03,(%a, ts) < 0, then, repeating the above reasoning for the function
%, = —1;,, we should have v{,(%,,%)> —M, or in each of the cases
1)-3) A, < M for every a. Therefore for a natural number 8> a we get
A, < M too. Putting

(4.7) u‘,"“:u?—uf, v =vi—vf (t=1,..,n)
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we have

(4.8) u® =ov®H(z,t; E) and |[v*|<2M for (z,t)eDM.

Let o3, o/ be the functions defined by the relations

(4.9) w=0H@,t; KE+k), uw=0H@ t;K+k) (@=1,..,m),
k, being a positive constant. Denoting ?¥ = 03 —13% we obtain

(4.10) uf = oPH(m,t; K+k) (E=1,..,1).
Let us denote
A= max max [6P(z, 1)) .
D (zneph

Evidently, there exist an index i, and a point (%, ty) € DM for which

g = |'5?f,(a:,,,, tes)]. If this point belongs to D1, then likewise as in the
proof of theorem III in [2] it can be shown that A4, = 0. Further, if
(@agy lap) € o™, then using the same reasoning as in the proof of theorem I
of this paper, one can show that A4, = 0 too. Finally, let us consider
the case: (&, te) € 8o+ Ci. Owing to (4.8), (4.10) and the lemma we
have

. l”icﬂ(wﬂﬂ) taﬁ)l < H(a}.,, t.,p; K+ko) < 2M0xp{ ko[Ru p(K""kO)]a} .

According to the above considerations we conclude that the inequalities
(4.11) |0z, )| < 2Mexp{—k[R,—p(K +k)P}} (i =1,..,n)
hold for (@,1) e Dﬁ‘_. Now let a, be an arbitrary integer. Put

No=maxH(z, t; K +k).

o

From (4.10) and (4.11) we derive the inequalities
[4(@, 1)| < 2MNooxp{—k[Ra—p(E +k)P} for a>a, (1) Dl
Hence we deduce that for every ¢ > 0 there exists ag)(e), @; > @y, such
that for 8> a> q; the inequalities luP(w, 1)) <e (1=1,...,2) hold for
(z, ) e.D.',':. It means t_h;a.t the sequences {uj(x,1?)}, ..., {ua(z,t)} almost
aniformly - converge in D™.

It is easy to see that the limit functions of these sequences belong
to class E, in

Similarly as in the proof of theorem III of [2] it can be shown that
these functions constitute a solution of the (F)-problem for the domain DM,
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Remark I. By theorem I it is the unique solution of the considered
problem.

Remark II. If the domain § (see § 1) is the half-space
S{x;, >0, —co<z; < + 00, (2t =1,...,n)},

then the theorems similar to I, II and III can be proved when instead
of H(z,t; K) defined by (2.4) the funection

K[(wl—lh(K))z + 2 wﬂ

Hl(m) t; 'K) = exp 1 _l“]_(K)t i=2 +vl(K)t

is applied (see [3]).
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