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Some oscillation properties of third order linear
homogeneous differential equations

by SHAIR ABMAD and ABDELALI BENHARRBIT (Oklahoma)

Abstract. This paper answers & certain question raised carlier concerning the
oscillatory behaviour of solutions of third order linear homnogeneous differential
equations. We also determine a certain class of such equations with the property that
each ogcillatory equation has two oscillatory solutions such that a solution is oscillatory
if and only if it is a non-trivial linear combination of these two solutions.

Consider the differential equation
1) ¥y +p@y’ +e@)y +rz)y =0,

where p, ¢, r €C[a, 00). A non-trivial solution is said to be oscillatory if
its set of zeros is not bounded above. Equation (1) is said. to be oscillatory
if it has oscillatory solutions. Non-trivial solutions which are not oscilla-
tory are called non-oscillatory.

The following two definitions, introduced in [2], were mainly motivated
by the work of Pdlya [5].

DerFINITION 1. The differential equation (1) is said to have property
R on [a, o0) if it has both oscillatory and non-oscillatory solutions, and
further, it has two solutions u, and u, with W(uy, 4,)(#) % 0, where
W(u,, u,) represents the wronskian of %, and u,.

Remark 1. It follows that the solutions %, and u, are both oscillatory.
For, suppose #,(z) # 0 on some interval [b, oc). Then u,(2) #0 and
Wy, u) (%) # 0 imply that no solution of (1) can have more than two
zeros on [b, oo) (see [5]). Consequently, any linear combination of %, and
u, i8 oscillatory since they  are solutions of a second order linear homo-
geneous differential equation. It follows that if » is & non-oscillatory solu-
tion of (1), then W{u,, u;, v) does not vanish anywhere.

DEeFINITION 2. The differential equation (1) is said to have property
RO if it has property B and a solution of (1) is oscillatory if and only if
it is a non-trivial linear combination of u, and u,, where %, and u, are the
solutions of Definition 1. Equation (1) is said to have property RN if it has
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property R and every non-oscillatory solution of (1) is a constant multiple
of a fixed non-oscillatory solution. '

The following three theorems have been established in [2].

THEOREM 1. The differential equation (1) has property B on [a, oo0) if
and only if its adjoint has property R on some interval [b, o).

TurEoREM 2. Suppose that (1) has solutions wuy U, and v such that
v(w) # 0 for o= a, and u, and u, are oscillatory with W{uy, u,) (%) % 0
for = a. Then (1) has property RO if and only if

lim t (2) = lim uz(m)_ =0

00 ’U(m) T—00 ’U($)

TuroREM 3. If (1) has property RO on [a, o), then its adjoint has
property RN on some interval [b, o), b > a.

An unresolved question raised in [2] was whether or not the converse
of Theorem 3 holds. We give a counter-example to show that the answer
is in the negative. In this paper, we also show that under certain reasonable
assumptions on the coefficients, (1) has property RO.

EXAMPLE 1. Let %, = sina? u, = cosa? andv = (24 1/2)+ (2 —1/2) X
% cos4da, 5 > 0. It follows that v is non-oscillatory, W(u,, 1,) () = — 22 < 0
for » > 0. Furthermore, calculating W(u,, %, v), it can. be verified that
Wy, s v}{@)<< 0 on [a, oo) for a sufficiently large positive number a.
Hence, there exists an equation of the form (1) with solutions u,, u,, and .
Thus, we may assume that «,, 4, and v are solutions of (1). Consider the
adjoint

(19 Y —(oy)"+(gy) —ry =0
of (1). If
T
[ a(t)at
F(r) = ¢ ’

then U; = F(x)W(uy,v)(x), Uy = F(z) W (uy,v)(2), and V = F(2)W (1, u,) (2)
are solutions of (1') (see [3]). Clearly, U, is oscillatory since u, is oscillatory
and v i8 not. Similarly, U, is oscillatory and V i§ non-oscillatory. It is
easy to verify that

lim U:(2)

2—00 (m

does not exist. Hence, by Theorem 2, (1’) does not have property RO.
Let y = ¢, sinz?+c¢,cos22+(2+1/2)+(2—1/z)cosds. In order to
show that (1) has property RN, we consider four exhaustive cases.
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Case I. Suppose ¢, > 0, ¢, > 0, and ¢;+¢; > 0. Then y can be writ-
ten as

y =Vei+asin(@®+a) 4+ (24+1/w)+(2—1/z)cosdr, 0<a<m/2.

Suppose ¥ is non-oscillatory. Then for soine positive number b, 4 (2) > 0
for # > b. For, there exist arbitrarily large values of « for which 7(z) > 0
gince v(z) > 0 and %*+a = f has solutions for any number 8> a. We
note that v((2n+1)n/4) = 8/(2n+1)=.

Consequently,

y(@2n+1)n/4) = Vei+ Sﬁl((2?b+l)2n2/16+Q)+ — 8 .
. Véd+d(@2n+1)=

Let e = sinvr'/lﬁ, and let N be a number such that ¥ > b, (2N +1)=/4
> b, and

8
l/ci + 6 (2rn+1)=w

for all > N. In order to obtain a contradiction to the assumption that
y(x) > 0 for > b, it is sufficient to show that sin ((2n+1)*=*/16 +q)
< —e¢ for some integer n, » > N > b. Thus, it is sufficient to find integers
n, n> N > b, such that (2n+1)n/4> D,

8
Vé+cé(n+1)rn

and sin((2n+1)*n*/16 + «) << —sinx/16. The latter inequality is satisfied
if 17T7/164+2kn< (2n+1)*n*/16 +a< 31w/16 +-2k~=. Since « is between
0 and =/2, a = m=[16 for some real number m, 0 < m < 8. Thus, it suffices
to show the existence of arbitrarily large integers n satisfying

(2) 17432k < 2n+1)*n+m < 31+ 32F,
where % is an integer.

We assert that there exist arbitrarily large integers n such that 8n=
can be written as 8nw= = 32p +r, where p is an integer and |r| < 1/100.
This follows since for any positive integer IV there exist integers a and
b, 1 < b < 3200N, satisfying the inequality |bn—a| < 1/3200N (see e.g. p.
196 of [6]). Consequently, for arbitrarily large integers N there exist
integers @ and b, 1 < b < 3200N satisfying the inequality [32bN = —32Na|
< 1/100. Thus, if we let 45N = » and Na = p, then 8nr = 32p 4 r, where
[7] < 1/100.

It follows that for any choice of m, 0 < m < 8, one of the numbers
@z = (20+1)P°~w, ¢ =n, n-+1,...,n+8, satisfies inequality (2) for some
integer k. To see this, let m, = (2n+1)*n = 32k ', where k is an integer
and 0 < 7' < 32. Then, #,,, = ((2n+})+2)’r = 32k++'+ 8nn+ 8x. Sim-
ilarly, each x,,;, j =2,3,...,8, be written in the form #,.; =

< E

< €

FiN ]
U
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= 32k -+ +p;(8nm) 4 ¢;(8=), where p; and t;l,- are integers. Replacing
8nw by 32p +r and dividing ¢;(8 w) by 32, we have

By = 32k, + 7 12513272 ...,
@pys = 32k, +2¢49" 41139816 ...,
Waps = 320+ 37417 4 22.79632 ...,
Tpyq = 320, 4r+1" +27.3272 ...,
Bpys = 32k + br+1' 4 24.9908 ...,
yys = 32k -+ 61+ +15.78712 ...,
Bpypr = 32k, +Tr+2" +31.7161 ...,
Bypg = 320y +8r+7' +8.7719 ...,

where each k;,, 7 =1, 2, ..., 8, is an integer, |7| << 1/100, and 0 < " << 32.

By dividing up the range of the wvalues of m into subintervals
i<m<i+1,i=0,1,...,7, one can verify that for each value of m in
this range one of the numbers @y, © = n, n+1, ..., n+8, satisfies inequal-
ity (2). For example, supposethat 0 < m < 1.

Then if ' < 7, @, sotisfies (2). If 7<<»' < 14, then 2,,, satisfies
(2). For 14 < 7' < 21, ,,, satisfies (2). If 21 < 1" < 30, then ,,, satisfies
(2). We note that for 21 <’ < 30, @, ., satisfies the inequality

17 482 (kg +1) < @0+ m < 81 +32(k, +1).
Tinally, for 30 < 7’ < 32, =, satisties the inequality
17 482 (fog + 1) < 45+ m < 31432 (ks +1).
Case II. Suppose ¢; =0, ¢, <0, and ¢]+¢2 # 0. Then we can write
y = Ve +aicos(z?—a) +(2+1/z)+ (2 —1/v)cos 4,
2L a7

If we let —& = co39n/16, the same reasoning as in Case I reduces our
problem to showing the existence of arbitrarily large integers n satisfying

9+32k < (2n4-1)n—m < 23 4 32k,

where % is an integer and m is a number such that 8 < m < 16. As in Case
I, it can be verified that for each value of m, some 2;, 4 = n, n+1, ..., n+38,
satisfies the above inequality.

Case ITT. Suppose ¢; <0, ¢, < 0, and ¢;+¢; # 0. Then we can write

y = —Vei+esin(@?+a)+(2+ 1))+ (2 —1/z)cosdn, 0<a<m/2.
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If we let ¢ = sinny16, our problem reduces to showing the existence
of arbitrarily large integers n satisfying

1432k < 2n+1)*n+m < 15-+32E,

where % is an integer and m is a number such that 0<m < 8. Again,
it can be verified that for each value of m, some ;i =n,n+1,...,n+38,
satisfies the above inequality.

Case IV. Suppose ¢, <0, ¢;>0, and ¢ +¢; # 0. Then ¥ can be
written as

y = =Vt + deos(@2—a)+(2+1/x)+(2—1/v)cosdn, n2<a<T..

Let ¢ = cos7=/16. It suffices to show that —cos(#?—a)< —e. Thus
it is sufficient to show the existence of arbitrarily large integers n satisfying
one of the inequalities

2% < (2n+1) r—m< T+32k
or '
25432k < (2n+1Ym—m < 32 4 32F,

where £ is an i.ﬁteger and m is a number such that 8 < m < 16. Again,
by considering values of m in subintervals of length one, it can be verified
that, for each-value of m, one of the z;,s satisfies one of the above two
inequalities.

Now, we consider the differential equation
3) ¥y =p@)y +q(x)y,
where p, ge Cla, o).

LeMMA 1. Suppose p, qe Cla, o) with p > 0 and ¢ > 0. If pe C'[a, o)
with p' > 0, then all oscillatory solutions of (3), if there are any, are bounded
on [a, o).

Proof. Let ¥ () be any oscillatory solution of (3), and let #; be a fixed
zero of y'(x). Let z, be any other zero of ¥'(®), w, > @,. If

max [y(2)] = [y(@)],

[21.552]
Ze (@, #,], then y'(z) = 0. Define
(4) Fly@)] = [y (2)]1*—2y(2)y" (2) +p(2)y *(2).
By differentiation,

Ply@)] =Fly@))+ [ p'(©)y2s)ds—2 [ q(s)y*(e)ds.
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If z = a,, then

max [y(@)] = y*(@y).
[21,29]

If », < %, then

(5) Fly(®)] = Fly(w)]+ [ p' ()9 (s)ds—2 [ g(s)y*(s)ds

< Fly(e)]+9*(®) [ p'(s)ds

= Fy(2)]+9* (@) [2(F) —p(2)].
From (4) and the fact that y'(¥) = 0, we have

Fly(@)] = [y’ (B)]*—2y (Z)y" (@) +2(2)y*(%)
| = ~29@)y" (@) +p @Y.
Therefore,
—2y(@)y" () +2 (@) y*(F) < Fly(@)]+2 (@) 52(@) — 2 (#)9?(2),
or
2 (m:)y*(F)—29 (B)y" (Z) < Fly(@)].
Now, by Lemma 2.1 of [4], ¥(Z)y"' (Z) < 0. For, y(z)y"' (z) > 0 and

y'(Z) = 0 would imply that y is non-oscillatory. Hence, p(z,)¥*(%)
< Fly(wy)], or

- Fly ()]
Yre)y < ———.
VS @)
Consequently,

F
max [y(@)F = ¥'(3) < 4 (e) + L]

[e1,T] - p(z)

and the lemma is proved.

THROREM 4. Assume the hypothesis of Lemma 1. Then if (3) is oscillatory,
it has' property RO.

Prootf. Using Lemma 2.1 of [4] and the technique used in the proof
of Theorem 3 [1], it follows that (3) has two linearly independent oscillatory
solutions # and » whose linear combinations are also oscillatory. It follows
that W(u, v) (x) does not vanish anywhere. For, otherwise, a linear com-
bination. of » and » would have a double zero and would, hence, be non-
oscillatory by Lemma 2.1 of [4]. Let z be the solution of (3) defined by
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the initial conditions z(a) = 2'(a) = 0, and 2'’(a) = 1. Then =z is non-
oscillatory. Let y = ¢,u +c,v + ¢;2 be any solution of (3). By Lemma 1,
and v are bounded.

lim z(x) = oo. Hence, ¥ cannot be oscillatory unless ¢; = 0. This

=00

shows that (3) has property RO.
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