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On the asymptotic behavior of solutions
of the equation y" +p(x)y =0
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Abstract. In this note we give sufficient conditions for each solution of " (z) +
+p(z)y () = 0 approching to zero. Our result unifies a part of [6] and Theorem 1

of [4].
1. Introduction. We are concerned with the asymptotic behavior
of solutions of the second order differential equation

(1.1) y'(@)+p@)y(x) =0,
where p(z) > 0 for £ > a and p’(z)e C[a, o).

Recently, Stachurska [5] obtained the following result which is an
improvement of [3], namely,

THEOREM A. If

(1.2) p(x)e (P(a, 00), p(@)—>00 as z—>oo,

and
z

limsup (p~¥(z)) f (P~ ¥(t)"|dt <1,

then, for each solution y(z) of (1.1),
(1.3) y(x)—>0 as x—oo.

In the present paper we will show that the same result may be obtained
under more general assumptions than those of Theorem A and Theorem 1
of {4]. We also unify Theorem A and Theorem 1 of [4] into a single criterion
for solutions of (1.1) satisfying (1.3). In this paper we say that a solution
of (1.1) is oscillatory if it has no largest zero. The oscillation criteria which
we use in this paper may be found in [1].

We will use the following notations throughout this paper:

(N1) u(x) = 29" (2)p(2) +g(x)p’ (2),
(N2) u, (z) = max (u(w), 0),

(N3) G(x) = —1/(fu(z)dt),
b
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if G(z) is well-defined, for some constant b > 0, where g(x) satisfies
(1.4) g)>0 forz>a and g¢g(z)eC[a, o).

2. Theorems. We will use an argument similar to Theorem 1 of [5]
to prove the following theorems.

THEOREM 1. Assume that there exists a function g(x) which satisfies
(1.4), 9(@)p(@)—>00 a8 200, and

llmsup(ll(g z)p( w)))f (lg"" /2 +u, (1)dt < 1.

Then, for each oscillatory solution y(z) of (1.1), (1.3) holds.

Proof. Let ¥ (x) be a non-trivial oscillatory solution of (1.1). We shall
first prove the boundedness of y(z) for a < & < co. To show that y(x)
'is bounded, it is sufficient to prove that the absolute values of y(z) at
its relative maximum and minimum points are bounded. Suppose that
these values are unbounded. Then there exists a sequence {c,} such that

y'(c) =0, lyle,)| = max(ly(a)l; z<[a,0,]) (n=1,2,..),
¢c,—~>o0 as mn—>oo and |y(¢,)|—>oc as m—>oo0.

Define the function w(z) by

w(z) = g@) [y (@ + (¢ (2)/2 + g(x)p (x))y*(x) — ¢’ (2)y (®)y (@).
Then we obtain for a <z < o

(2.1) w(@) = w(z)+ [ (g7 (8)/2 +u(t))y*(t)dt

From (2.1), for x =¢, and 2 =a (n =1, 2,...), we obtain

‘n

w(0,) = (9" (€a) /2 +g(ca) P (€n))y2( n)—wa)+f(g"’ )/2 +-w(t))y2(t) dt.

Since

T

(2.2) 9" (@) =g"(@)+ [ ¢ (at,

a

we have

9(n)P(0n)y*(cn)
= w(a) +=}f 9" (1)(y*(8) —y* (cn)) 4t — 39" (@)y?(e) + f u(t)y*(t) dt

< lw(a)| + ey*(e,) +éflg”’(tlly (1) —y? (cn)rdt+fu+ )y2(2) i

‘n cn

< 1w (a)] +ey?(en) + Ryr(e)) [ 19 (O)idt+y2(e) [ u, (B)dt,
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where ¢ = %|g''(a)|. Hence we obtain the inequality
2.3)  glenp(e)y*(n)X )
x(L—ellglen)p(en) —(1/g(enp(en)) [ (Rlg™ )] +u, (8)dt) < ho(a)l.

Since, by assumption, g(c,)p(c,)y%(c,)—>oc a8 n—oo, from (2.3) we obtain

liﬁinf(l— (Llg(@)p (@) [ (}lg" @)+ w. () d) <o,

contrary to the assumption.
Thus we have

d = limsupy?(z) < oo.

T->00

To complete the proof of (1.3) it is sufficient to prove that d = 0. Suppose -
that d > 0. Then for every ¢ > 0 there exists a number M such that

{2.4) y:(x) <d+e for x> M.

Let #; < @, < ... be the successive relative maximum and minimum points
of y(z) and M < ,. Then ¥'(z,) = 0 and 2,—>o00 a8 n—>oco. From (2.1)
for =, and 2 = b, where M < b < z, we have

(2.5)
(39" (%) +0(@) P (@) 92 () = w(a) + 3 [ ¢ D)D)+ [ w(t)y>(t)at.
b b

From (2.2) and (2.5) we obtain the inequality
9 (@) P (@) ¥* (@)
Tn Tn
< @) +3 [ g7 )20 —y2(@,)|dt+ ey (@) + [, (1)y2 ()2,
b b
where ¢ = ‘}lg”(b)_]. From (2.4) we obtain the further inequality
Y*(@a) = (l0(b)| +c(d+e)) /(g (@) p (wn)) +
+((d+s)/(29(wn)p(wn))) [ g @at+(@+ /(g (@) p (@) [ . (t)de.
Hence,
Tn
(2.6) limsupy®(z,) < (d+#)limsup((1/{g(z)p (za) [ (Rlg™ B+, (t)) ).
‘Write
&, — limsup (1/(g(x)p (@))) [ (19" ()] + .. (1) ).

§ — Annales Polonici Mathematici 30.1



66 Kuo-liang Chiou

Ifd, = 0, then from (2.6) it follows that d = 0 and we have a contradiction.
If d, > 0, then for ¢ < d(1—d,)/d,, we have d,(d+¢) <d, contrary to
(2.6). Therefore, (1.3) is satisfied.

If we now take g(z) = pf*(w) in Theorem 1 and use oscillation criteria
of [1], we obtain the following corollary which improves Theorem A and
is related to Theorem 9.5.1 of [2], p. 472.

CoroLLARY 1.1. Let p(x) satisfy (1.2). If

x
limsupp“(w)fl(p‘*(t))”'idt <2,
—o00 a

then every solution y(x) of (1.1) satisfies (1.3).

If we take g(z) = p~%(«) for 0 < b < % in Theorem 1 and use the oscil-
lation criteria of [1], we obtain the following result which improves Theorem
1 of [4] for 0 < b < 3.

COROLLARY 1.2. Let p (x) satisfy (1.2) and p’'(x) = 0 for v > a. If

limsupp®~ () [ |(p~°(1))""|dt < 2b/(L—b)

for some 0 < b < 3, then every solution y(x) of (1.1) satisfies (1.3).

If we take g(x) = p~ () for 4 < b < 1 in Theorem 1, we obtain the
following result which improves Theorem 1 of [4].

COROLLARY 1.3. Let p(x) satisfy (1.2) and p'(x) = 0 for x> a. If
. z
limsupp®~*(x) [ |(p~°(1))"|dt < 2
> a

for some 3 <b <1, then every solution y(z) of (1.1) satisfies (1.3).
If we take g(x) = p~'(w)(logp(2))’, b> 0, in Theorem 1, we have
the following result.

COROLLARY 1.4. Let p(w) satisfy (1.2) and p’(z) =0 for o> a. If

l'ir;lj:h (L/{10gp @) [|(p7"t) (logp 1)) |dt < 2,

then every oscillatory solution y(z) of (1.1) satisfies (1.3).

We will now remove the condition g(z)p ()— o0 as £—> oo in the above
theorem. However, we require other more restrictive conditions than
above on p(x).

TrroREM 2. Let p(x) satisfy (1.2), g() satisfy (1.4),
(2.7) p'(@)=0 and (g(2)p(@) <0 for all x> a,

z
limG(z) =0 and limsupG(a) [ lg” (1)l dt = 0;
200 z—>00 a

then every oscillatory solution y(z) of (1.1) satisfies (1.3).
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Proof. Let y(x) be any non-trivial oscillatory solution of (1.1). Thus

there exists the sequence {x,} such that a < x,, ,— co a8 n—>o0, and ¥’ (x,)
=0, n =1,2,... Define

0(2) = y*(@)+p7 (@) [y (@)
Since
dv(z)/dz = —p' (z)p~*(2)(y' (2))2 <0,
lim v(x) = L exists. If L = 0, then (1.3) holds. Now assume that L > 0.
'zl‘_i:ls we have for 2>z,

(2.8) v*(2) <v(@) < 9(2;) = y*(@,) and L <0(a).

From (2.1) for # =2, and z =z, (»n = 2,3, ...), we obtain

w(2,) = (39" (@) + 9(@) P (@) ¥2(2)

=w(@)+ [ (b () +uit)y(t)dt

or

Tn Tn

~ [y dt<wi@)+3 [ ¢ O )d— 19" (@,)y*(2,)
Sw@)+3 [ 97 @)FH0) —y2(a,) @ — 1" (@)Y (@,).
Thus o
(29)  — [u@mo@ar<w@)+} [ g0 ([y0)—y3 (@) dti—
1 ) 24
— 19" (@)Y} (z) — [ w(®)p7 () (¥ () dt.

From (2.7), by integration by parts, we have

Tn

Zn Zn .
— [up Oy @pdt = —2 [ gy’ ®)Pdi— [ gt)p’ mp~ D)y’ (1)de

Zn Tn
< -2 [0 ePra =4 [ g0y Oy @)at
= —4 [ gWp®y)y (t)dt
= —29(a)P (2,)9*(@0) + 29 (@) (@) (@) +

+2 [ (g@)p (1) y2(0)dt < 29(w,)p () ¥2(,);

T
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(2.9) now becomes

210) — [ u@mo@d<w@)+} [ g7 1)y ) —y*(w.)dt—

— 39" (#1) ¥* (@) + 29 (21)  (2,) Y2 ()

Zn
<e+3 [ 197 O] + 192 (@,))) dt + o1 y2 ()
o)

Ty
<e+yi@) [ 19 (1) dt + oy (@,)
55 |

because of (2.8), where ¢ = |w(z,)| +2¢(z,)p(x,)¥%(2,) and ¢, = }1g” (z,)]-
From (2.8) and (2.10) we obtain .

Zn Zn
—L [ )@t <e,+y*(a) [ lg @)ldt
T T

or

Ty
L< @ (@) (0at+92@) [ lg ())de),
)

where 6, = ¢+ ¢;9?(2,) since from (2.7) we have u(z) < 0 for = > a. Let
n—>o00; then, by hypotheses we obtain L = 0 which contradicts the as-
sumption L > 0. This proves the theorem.

If we take g(x) = p~'(x) in Theorem 2 and use the oscillation criteria
of [1], we obtain the following result which has been proved in Theorem
2 of [4].

COROLLARY 2.1. Let p(w) satisfy (1.2) and p'(2) > 0 for a < «. If

liﬂsup (l/logp(a;))f](p"‘(t))"’]dt =0,

then every solution y(x) of (1.1) satisfies (1.3).

If we take g(x) = p~'(x)(logp(z))™% 0<b<1, in Theorem 2 and
use the oscillation ecriteria of [1], we obtain the following result.

CoROLLARY 2.2. Let p(x) satisfy (1.2) and p’(z) = 0 for a < z. If

z

limsup(logp (@)~ [ |(p~" ) l0gp (8) )"

a

dt =0,

then every solution y(x) of (1.1) satisfies (1.3).
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If we take g(z) = (p(z)logp (w))”l in Theorem 2 and use the oscillation
criteria of [1], we obtain the following result.

COoROLLARY 2.3. Let p(x) satisfy (1.2) and p' ()= 0 for a<<z. If

244

dt =0,

lim sup(log(logp (#)))~" [ |((p(t)logp (1))

then every solution y(x) of (1.1) satisfies (1.3).
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