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Abstract. Let E = {z: [z| > 1} and let
F(z)=z(1+A;z27'"+A4,z7%24+..), G@=z(1+Bz '+B,z7 %+ ..),
be meromorphic in E. The convolution or Hadamard product FxG we define as follows:
(FsG)(z)=z(1+A,;B,z7 '+ A4, B,z7%+ ..).

In this paper some new definitions of the different classes of functions defined on E are
given. For a fixed class Q a class Q' is construted such that

f€Q =Yy (FeH)(2) # 0.

Using these new definitions, we obtain some results on the neighbourhoods of functions. If
we write

N y(F) = {F: Z k|Ay— By},

k=1

then some conditions on the function F are given such that 4,(F) is contained in a fixed class
of functions.

Let U = {z: |z] <1} be the unit disc and let E = {z: |z| > 1} = C\U be
the exterior of the unit disc.

Let f, g be two functions holomorphic in the disc U and having the
Taylor-Maclaurin expansions

(1) @)=Y az g@=Y b~
k=0 k=0

The convolution or Hadamard product f«g of the functions f and g we
define as follows

@™

(2) (feg)(2):= Y arby 2"

k=0

If f and g are holomorphic in U, then fxg is holomorphic in U.
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Now let F, G be two functions meromorphic in E and having there the
following Laurent series expansions:

(= 2]

(3) Fo)=z+A,+A,z7 '+ ... =z(1+ ) Az7Y),
k=1

4) G(z)=z+B,+B,z7'+...=z(1+ ) Byz™¥.
k=1

The convolution or Hadamard product F»G of such functions we define
as follows:

a0
5 (FsG)2):=z+ A, By +A4;B,z7 '+ ... =z(1+ Y A,B,z7%.
k=1 ~
Using a concept of convolution, St. Ruscheweyh [3], [4] gave new
definitions for some known classes of holomorphic functions and for some
new classes. These new definitions are very useful in solving some extremal
problems in those classes.
Let St denote the class of functions of the form

(6) f@=z+Y a7
k=2
which are holomorphic univalent in U and map the unit disc U onto
domains starlike with respect to the origin.
If we put

. _ 1 z .z |
St = {h(z)— 1+it|:(1—z)2 ul—z]' teR},

then the following theorem holds:

THeoreM A ([3], Ruscheweyh). Let a function f(z) of form (6) be
holomorphic in U. Then

feSt<>Vze Uy VheSt'(f+h)(z) # 0,
where Ug = {z: 0 <|z] <1} = U \{0}.

A large number of results of this type for different classes of functions
holomorphic in U were obtained by Ruscheweyh [3], Rahman and
Stankiewicz [1], J. Stankiewicz and Z. Stankiewicz [7], Silverman, Silvia and
Tellage [5].

Some results for meromorphic functions were obtained by Rahman and
J. Stankiewicz [1], [6].

In this paper 1 would like to give different definitions of this type for the
classes of functions meromorphic in E and some applications of those

definitions leading to some results on the neighbourhoods of meromorphic
functions.
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We need the following notation:
={F(z) =z(1+ ), A,z *): F meromorphic and
k=1

univalent in E},

M= {FeM: F(z)#0 in E},
M=IFeM: F(zy=z(1+ Zz A z7%)) = {FeM: 4, =0},
k=

2F'(2)
F(z2)

M} =%FE]&: Re > a for zeE}, ae {0, 1),

. [ zF'(z) ]
M, = FeM: Rel| e @ > 0 for zeE}, Be(—3in, in)
| F(2)
- 0 p2F ()] }
M;,=<FeM: Re >acosf for zeE},
’ % © F@)

ae 0, 1), Be(—in, in),
_ o zF'(2)
M(A, B) —{FeM. o

and F 3G if and only if there exists a function ¢ such that |@(2) = |z|] and
F(z) = G(op(2)) for zeE.
Moere generally for a fixed univalent function G(z), G(o0) =1 we put

2F’(2)
M(G) = {Gen‘»} F()eG()}

Let F, and F, be the functions defined below:

, Al <1, |Bl <1, A+B¢O}

@ Fi@i=z(1+ Y (1—k)z % =z(1+ 3 (1-k)z
k=1 k=2 .

_.(4 1 __23—222
BATEN AT

8) 1':2(2):=z(l+k§:1 z7h =z(k§0 (1/2)) = Sy ok

Then for every function Fe M we have

(9) Fz*F':F*Fz:F,

(10) FI*F‘=F*F1 =ZF’,
where F,, F, are given by (7) and (8), respectively.
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Using functions (7) and (8), we define the following families of functions:

F,(xz)—F,(yz
M'={H(z)= 209 F 0 1y =1, xaey},
M=M=
F,—(a+it)F
M¥ ={H(z) - ‘1_(‘(":;) 2. te R},
- F,—ite"®F
M; ={H(Z)='—“ll—_'l—f‘e—_Tz° tER},
- F,—(acosB+it)e F,
M, =<{H = : . )
ha { @) 1—(acosf+it)e R

Fy—[(" + AYe"~ BIIF,
e e © 20

For a fixed function G(z), G(o0) = 1, which is regular univalent for |z|
21 we put

M(A, By = {H(z) =

F,—G(e")F,

M(G)’={H(z)= e . te <0, 21:)}.

Now we can give a new definition for some classes of functions.

THEOREM 1. Let F(z) of form (1) be holomorphic in E, and let Q be one of
the classes M, M¥, My, M;,, M(A, B) and M(G). Then FeQ if and only if

(11) VHeQ VzeE (FxH)(z) # 0.
Proof. (a) Q = M. From (11) we have
(12) F(xz) # F(yz)

for every x, y, z, |x| =|yl, ze E. This gives univalency on every circle |z| =r
and hence in E. Reciprocally, if F is univalent in E, then (12) holds for every
zeE and |x] =|y| =1, x # y and therefore

0 # F(xz)—F (y2) = (x—y)(FxH)(2),
and the proof is complete.
(b) Q = M}, From (11) we have

ZF' (z2)—(a+it) F(z) # 0;
equivalently,
zF'(2)
F(2)

(13) # a+it

for every zeE and every teR.
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Since zF'(z)/F (z)l,- - =1 and a+it covers the straight line Rew = a,
we have by (13)

zF'(2)

(14) Re F) > a.

Therefore Fe M.

Reciprocally, let Fe M?, that is, let F satisfy condition (14). For He MY
we have the identity

(15) (FxH)(2) =

F(2) zF'(2) .
1—(@+iD) [ F(2) ‘(“’L't)]’

and therefore by (14) we have (F*H)(z) # 0.
(c) @ =M,. From (11) we have

5 2F'(2)

(16) Fo) #it, teR.
Since
e"’zﬁ(g) B =¢*, Reé’? >0,
we have
‘.ﬂzF'(z)
(17) Re[e Fo) >0 for zeE
and Fe M,.

Reciprocally, if Fe M,,, then (17) is satisfied. For He My’ we have the
identity

F(z)e™ [¢? zF’

By (17) and (18) we have
(F+H)(2) # 0,

and the proof is complete.
(d) Q = M;,. From (11) we have

(19) e,.,,z;"(g) £ (acosB+it) for teR, zeE.
Thus
(20) Re [e“ z:,: (S)] >acosp for zeE,

and therefore Fe M;,.

2] — Annales Polonici Mathematici XLV1
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If FeM,,, then by (20) and by the identity
e PF(2) e’ zF' (z)
1 —(acos f+ir) F(z)

(21) (FxH)(z) = —(acosﬂ+ir)J, He Mj,,

we have
(FxH)(2) #0 for He M, and zeE.
() Q =M(A, B). From (11) we have
zF'(z) €'+ A
F(z) * é'—B’

te €0, 2n).

This means that zF’(z)/F (z) do not take any boundary value of the function
(z+ A)/(z—B) on E. Since (z+ A)/(z— B) is univalent in E, we have

zF'(2) _32+A
F(zy) "z—B

~and therefore Fe M(A, B).
If HeM(A, B), then the following identity holds:

(22) (FsH)(z) = Fz) [zF'(z) &'+ A ]

1=("+A)fe-B)| F(zy ¢ —B[
If Fe M(A, B), then we have

zF'(z) z+A zF'(z) €'+ A

3 , Ay

F(zy z-B F(zy * €é'-B
By (22) and (23) we have

(FxH)(z) # 0 for every H=M (A, B), zeE.
() Q = M(G). From (11) we have

(23) te <0, 2m).

F’ .
2k t2) # G(e") for every te <0, 2n) and zeE.
F(z2)
) . zF'(2) . X
Since G is regular univalent, G(cc) =1 = F@2) , we immediately have
zF'(2)
G(z2).
F2) 36G(2)
Reciprocally, let Fe M(G); then
Fl
(24) 29 560,

F(2)
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For He M(G’) we have the identity
_ F(2) zF’(z)_ i
(25) (FxH)(z) = =G (e,.,)l: Fio) G(e )].

By (24) and (25) we have (FxH)(z) # 0 for every He M(G)' and zeE. This
means that (11) holds.
The proof of Theorem 1 is complete.

For a function FeM and ¢eC, n=0, 1, 2,..., we define
F(z)+az, n=0
Fn.c(z)= 1+e¢
F(z)+ex'™", n=1,2,...

LemMMa 1. If for every e, |e| <& we have F,.e M}, then for every He M¥'

(FxH)(z)| >y, for zeE,
where

Proof. If H(z) =z(1+ ) ¢z ¥)e M¥, then
k=1

(1-k)—(a+ir) _1—a—k—it

a=al) =" i I—a—it
and
T
Thus
1<led g'k“;:” < lfa for k+a—1]> 1—a,

%l_l <lgl<1  for k+a—1] <1—a.
This gives

PP ALt LN

<
| l1—a
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and

Now, by Theorem 1, we have for n > 2
F,.e M} <(F, »H)(z) # 0<>(F+H)(z) +ec,z2' " # 0
< z" 1 (FeH)(z) # —ec,.

Since this inequality holds for every ¢, |¢| < 4, it follows that z"~ ! (FxH)(z) do
not take any value in the disc [w| < dmin|c,| =, that is,

2"~ ' (F«H)(z)| = 4.
We have
@(&) = [(1/8~ Y (HxF)(1/&)] ' = &+ b, & + ..., (&eU.

By the Schwarz Lemma we have

1

@ <zI<I”,  ceU,

i

or equivalently

|z*" Y (H*F)(2)] = 8|z|", :zeE,
(F«H)(2)| = é|z| > 6, zeE.

Now let n =0:

1
Fo.(2)e M7 < (Fo,.xH)(2) # 0¢m [(FxH)(z) +ez] # 0.

Thus
F
_(i(z) # _8, ZGE,
z
B, e

(F«H)(2) 26|zl > 6 for zeE.

For n=1 we have
Fi.(2)eM? <(F xH)(2) # 0<>(F+H)(z) # —ec,
for He M} and zeE.
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This gives
o for a > 1,

a
6?& for a<%.

[(FxH)(z)| = d min|c,| = {

In the class M we can introduce a pre-norm in the following way:
IFll = Y klAd.
k=1

Now we can introduce the distance between two functions and the
neighbourhoods of functions.

For F(z)=z(1+ ) A,z7™"), G(z2)=z(1+ ) B,z™*) we define
k=1 =

k=1
d(F, G)=|[F-G|l = } k|4,~By
k=1

and

N s(F)={GeM: d(F, G) <$é}.
THEOREM 2. Let n=0, 1, 2,... be fixed. If for every ¢, || <9, we have

F,.(z)e M7,
then
N3 (F) = Mg,
where

6p=06(1—) forn=0,2,3,...,

5 _{5(1—01) fi<a<l,
' 6 if 0 <a <4.

Proof. Let Ge.# (F). For He M}’ we have

KG*H)(z)| = |((F +G— F)+H)(z)|
= |(F+H)(z)+((G— F)=H)(2)|
> |I(F+H) (2| - [(G— F)s H)(2)|

29— 3, |A—Billcy/ 12l "

k=1

1 On
>t 154 @O =n—1"
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Then for every He M¥ and ze E we have
(GxH)(z) # 0.
This means that Ge M¥ and Theorem 2 is proved.

Remark. In the special case A; = 0 we obtain Theorem 9 of paper [1].
LEMMA 2. If for every ¢, |¢) <1 and a fixed n=0. 2, 3,... we have

F,,'se Mp,
then for every He My
(FxH)(z)| >y, for zeE,

where

|n—./n*—4(n—1)cos® f|

) =0, 2, 3,...
2cos "

Vn =4
Proof. We have H(z) = z(1+ Z ¢z %)e My if and only if
k=1

_ _ —k+1—ite™? { k
ck - ck(t) - l_lte_..p R 1 _it_e_—.-ﬂ".

It is easy to check that ¢, (r) covers a circle with centre s, = 1 —3ke™ #/cos 8
and radius R, = $k/cos 8. Therefore

2 2
k+./k*~4(k—1)cos ﬁg k ,
2cos f cos 8

eyl <

k—/k*~4(k—1cos’f _ k-1
2cos B ~ ok

leal = cos f3.

Thus for n=2,3,...
F,.€ My<>(F, #H)(z) # 0« (FxH)(2) +ec,z' " # 0,
" Y (F«H)(2) # —ec,.

Therefore

n—/n*—4(n—1)cos®p

~n—=1 z ‘ =
="~ (FxH)(2)| > 8 min e, (1] = 8 2cosf

Using the Schwarz Lemma, we obtain

/
/

_ 2 __ _ 2
(FxH)(z) > "/ 4= Deos™f

2cos f8
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For n=0 we have as usual:
(FxH)(2) > 6 (yo=1).
This completes the proof of Lemma 2.
THEOREM 3. Let nef0, 2, 3,...} be fixed. If for every ¢, |e] <8 we have
F,,,teMﬂ,
then
',/V,,.(F) - Mp,

where

8n = VaC0S f =30In—/n*—4(n—1)cos®fl, n=0,2,3,...

—1
(6o = dcos B, 6,,>5nTcoszﬂ for n=23,..).

Proof. Using Lemma 2 and the estimations on the coefficients c,, we
have for every Ge .4 (F) and He Mj the following relation:

(G+H)(2)) = [(FxH)(=)+((G— F)xH)(=)|

X

> |(FxH)(2)— Y IBy—Aillec 2" 74| > 9y, —( Y k|B,— A,))
k=1 k=1

1
cos f

1 On
= '}’,."'d(F, G)m > },"HCOSﬁ -

Now the results follows from Theorem 1.
LemMA 3. Let ne{0, 1, 2,...} be fixed. If for every e, |¢| <,
Fn,ee Mﬂ,aa
then for every He My, we have
(F+H)(z)] >y, for z€E,

where

- n—/n*—4(1—a)(n+a—1)cos?p n+a—1
= = * >5 .
=20, =0 2(1 —a)cosf n cos

Proof. We have H(z) =z(1+ ), ¢,z %) e M, if and only if
k=1
1—k—(xcosf+it)e ™ ke'

¢ = (t) = =] —— .
k=l 1—(xcosf+itye e? —acos f—it
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For real ¢t the values c,(t) cover a circle with centre

-1— ke'? _ 2(1—a)cos p—kcos f—iksin B
= T (1—a)cos B 2(1—a)cos
and radius
R _‘ ket B k
* T |2(1-a)cos |  2(1—a)cosp’
Thus
- — iP—a(1= _ 2
k+o 1<k Jk2—4(1-a)(k+a—1)cos ﬁslc.ls ko
2k 2(1—a)cos B (1—a)cos B

For n =0 we have as usual |(FxH)(2)] > 6. For n=1, 2,..., using the
estimations on |¢,| in the class Mj,, we have

Fn.ceMﬂ.a <>(F,*+H)(2) # 0<(F+H)(z) # _ecnzl—”Q(F:IIi—)n(Z) # —E&Cp.

Thus

2"~ ' (F+H)(z)| = &* min |c,(t)]
1e{0,2n)

_Jn=a(l= ~1)cos? -
n—./n?—4(1-a)(n+a—1)cos? 5 gnte lcosﬁ.
2(1—a)cos B n

THeOREM 4. Let nc{0, 1, 2,...} be fixed. If for every &, l¢| <&, we have

=4

F ne € M p.as
then

‘A/.J,,(F) c Mﬂ.a’

where

0o = 0(1 —a)cos f,

On = Va(l—@)cos B = 46 |n— . /n? —4(n+a—1)(1—a)cos p|
n+a—1

=0 cosf, n=1,23,...
LEmMMA 4. Let

H(z)=z(1+ i a2z *)e M(4, BY.
k=1
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Then for k=1, 2,,,, we have
|k—|(a—l)B—A|| S (k—1)(1—|B))+1—]A|

> >
(26) e |4+ B |A+B|
_ k(1 —max {|4], |B})
= |4+ B ’
(k—1)(1+|B)+1+|4]
<
@ X ye
kO +max (4l 1B 2%
[A+ B A+ B

Proof. We have He M (A, B)' if and only if its coefficients ¢, are given
by the formula
—(k—=1)—(e"+ A)(e" — B)
1—(e* + A)/(¢" — B)
=kw—u—nB+A=A—w—nB+ k_
A+B |A + B| A+B

=)=

This means that ¢, (¢) covers a circle with centre
. A-(k—1)B
Y A+B
and radius
k
R, = .
* " |A+B|

Using the estimation ||s,| — R,| < [c,] < |si + R, we obtain (26) and (27) after
some calculations.

LemMa 5. Let ne{0, 1, 2,...} be fixed. If for every e, |¢| <0, we have
F,.e M(A, B)

then, for every He M (A, B),
(FxH)(2)| >y, for z€E,

where
yO =5a
,, = sln=ln=DB—A] _ J(n—1)(1-B)+(1-]4)
|A+ B |A+ B
> ns 1 —max {|A|, |B}

|A+ B
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Proof. If, for some F, we have F,,e M(A, B), then by Theorem 1
F,.(z2)e M(A, B)<=>(F, . xH)(z) # 0 < (F+H)(z)+¢c,z' " # 0

< z" 1 (FxH)(z) # —ec,.
This implies that

|z"~ Y (F+H)(z)| = d min|c,(t)|.

Using the Schwarz Lemma, we have

In—I(n—1)B— A
F
(FxH) @) > 0—"—"5
nd
ZTA+B| ((n—l)(1—|B|)+1—|A|)zm(l—maxﬂm, IBI}).

For n =0 we immediately have
(F+xH)(z)| > 4.
THEOREM. 5. Let ne 0, 1, 2,...} be fixed. If for every ¢, |¢| <9, we have

F,.e M(A, B),
then
N, (F) = M(A, B),
where

3 |A+ B
™ "l +max!|4], B
=5|n—|(n—1)B—AII S 6(n—l)(1—|B{)+(1-|AI)
1+max !4, B! = 1+ max {|4|, |B|}
" 1 —max |4, |B[]
~ 14+ max!|A], B’

>15|4A+8B|,

On

Proof. Using Lemma 4 and Lemma 5, we obtain for every Ge .4’ (F)
the following relation:

(G*H)(z)] = |(FxH)(z)—((F — G)xH)(z)|
> (F+H) @)=Y, (A= Bocz' |
k=1

1+ max {|4], |B]} &
> Yp— k|A,—B
4 |4+ B kgl 4= B

_ 1+max{|4], |B]}

Uy
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Thus
(GxH)(z)] >0 and therefore (Gx*H)(z) # 0,

which by Theorem 1 implies Ge M (A4, B). The proof is complete.
In the general case, for the class M (G), G(c0) =1, G univalent (convex)
in E, we have

THEOREM 6. If for a fixed ne {0, 1, 2,...} and for every &, |¢| < &, we have

F,.e M(G),
then
N sy (F) = M(G),
where

o k—1+G (")
0°(G’"'5/SEP KIT=G )’

. s ln—1+G(ei')| |k—-1+G(e")I
On = oMl e @ [P R IT=G ()
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