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On balls and totally geodesic submanifolds

by P. G. WaLczak (Lodz)

0. Totally geodesic submanifolds of a Riemannian manifold M can be
characterized as submanifolds N such that any point x of N admits an open
neighbourhood U < N such that dy, |U xU =dy|U x U, where d,, and dy
denote the distance functions on M and N, respectively. In this note, we
show that a compact submanifold N of M is totally geodesic if and only if
there exists a positive number ¢ > 0 such that

(1) By(x,r)=By(x,r)nN

for any x of N and r of (0;¢), where By (x,r) and By(x, r) denote the

centred at x open balls of radii r on M and N, respectively. (Recall, that the
relation

(2) By(x,r) € By(x,r)nN

holds for any submanifold N of M, any x and r.) If N is a submanifold of M
and equality (1) holds for any x of N and r of (0; ¢), then we say that N is

e-regular. We denote by ¢(N) the smallest upper bound of the set of all ¢
such that N is e-regular.

1. THEOREM A. (@) If a submanifold N of a Riemannian manifold M is -
regular for some ¢ > 0, then it is totally geodesic. (b) If N is compact and
totally geodesic, then it is e-reqular for some & > 0.

Proof. (a) Suppose that N is e-regular. It is sufficient to show that if
x, yeN and dy(x, y) <e, then dy(x,y) =dy(x, y). In order to do this,
let a=dy(x,y)<r<e. Then yeBy(x,r)—By(x,a)=(By(x,r)nN)—
—(By(x, @) " N) = (By(x, r)—Bpy(x, a)) nN. It follows that y¢ B, (x, a),
ie. that dy(x, y) = a.

(b) Suppose that N is compact and totally geodesic. For any x of N
denote by o(x) the radius of injectivity of M at x ([2], § 5.2). The function
N3xrg(x) is continuous. Therefore, the number 6 = ming is positive. If

N
xeN,veT, N, |v)=1, |t] < and y = exp(tv), then dy(x, y) =dpy(x, y) = |i|.
In fact, if a =dy(x, y), then a< L(c) =|t| <o, where c: (0, 1> >N is a
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regular curve given by c¢(s) = exp(stv), and y = exp(aw) for some unit vector
w of T.N. Since |aw| < 9(x), |rv| < ¢(x), and exp(aw) = exp(tv), we have aw
=tv and a = [t|. The similar argumentation shows that d,(x, y) = |f|.

For any x of N put

by = d‘" (.Y, N_BN(X, %6)).

Let us take points x and y of N such that dy(x, y) < $J. There exists a point
2o of the set N—By(x, 19) such that ¢, = d, (x, z,). Clearly,

dy(y, z0) Z dy(x, zo)—dy(x, y) 2 %5 —dy(x,y).
If dy(y, zo) = 16, then zoe N —By(y, $8) and
(3) 8}' S dM(y' ZO) < d.‘\«l (,V, x)+dM (X’ :0) < 8.\‘+(1N(x3 )’)«

If dy(y, zo) < 39, then there exists an unit vector v of T, N such that =,
=exp(rv), =dy(y, z0). Put z=exp((t+dy(x, y))v). Since +dy(x, y)
<d<o(y), we have dy(y,z)=t+dy(x,y) and dy(z, z4) =duy(x, y).
Therefore, ’

(4) £y S dy (v, 2) Sdy(y, X)+dy(x, 20) +dy (2, 2) S e+ 2dy(x, y).
From (3) and (4) it follows that if x, ye N and dy(x, y) < 14, then
' ey —&y) < 2dy(x, y).

We conclude that the function N =x+g, is continuous.

Put ¢ = min {¢,; xe N}. We claim that N is e-regular. In fact, if xe N, r
<¢, and ye N By(x, r), then dy(x, y) < 16 (otherwise ye N —By(x, 39)
and dy(x,y) =6, 2¢e>r) and dy(x, y) =dy(x, y) <r.

This ends the proof.

In other words, Theorem A says that (a) if ¢(N) > 0, then N is totally
geodesic and (b) if a submanifold N is compact and totally geodesic, then
e(N) > 0.

ExampLes. If S* (resp. P*R) is considered as a totally geodesic
submanifold of $™ (resp., of P"R), k < m, then ¢(S*) = ¢(P*R) = + x. If N is
the totally geodesic submanifold of the torus T= R?/Z? obtained by the
projection of the line L< R? given by the equation

pxy+qx;+¢c =0,

then

(a) ¢(N) =0 when the number p/yq is irrational,

(b) ¢(N) =+ when p,geZ and p*+4% =1,

(c) e(N) =1/, p*+q* when p,qeZ, (p,q9) =1, and p*+q* > 1.

If N, (i=1,2) are totally geodesic submanifolds of Riemannian
manifolds M;, then N; x N, is a totally geodesic submanifold of M, x M,
and £(N; x N,) = min(e(N,), e(N,)).
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2. THeoreM B. Let G be a group of isometries acting freely and properly
discontinously on a complete Riemannian manifold M. If N is a complere G-
invariant connected submanifold embedded in M and N = n(N), where =:
M —M = M/G is the projection, then

(5 min(}d, e(N)) < £(N) < e(N),

where d = inf |dy(x, gx); xeN, geG, and g +# e].
Proof. At first, we shall establish the equality

(6) dig(n(x), m(y)) = in£dM (x, yg), x,yeM.

Let us take points x and y of M and put X = n(x), y = n(y). Since M

and M are complete and n: M —>M is a covering, there exist a curve

: €0, 1> > M and its lift ¢: <0, 1> - M such that &(0) = %, &(1) =y, c(0)

= x, and L(&) = dg(X, ). It is clear that L(c) = L(¢) and c(1) = yg for some
g of G. Therefore,

(7 du(X,7) = L(©) = L(c) =2 du(x, yg) > ilegdm(x, y9).
a

On the other hand, if ge G, then there exists a curve ¢: (0, 1) - M
such that c(0) = x, ¢(1) = yg, and L(c) = dy(x, yg). Then

(8) dy(x, yg) = L(c) = L(moc) 2 dg(X, ¥).
Inequalities (7) and (8) yield (6).

From (6), it follows immediately that
9) By (n(x), r) = n(By(x, 1)

for any x of M and r > 0.

From the assumptions of the Theorem, it follows that Gy
= 'g|N; geG) is a group of isometries of N acting freely and properly
discontinously on N in such manner that N = N/G,. Therefore, we can
prove analogously to (6) and (9) that

(10) dy(n(x), m(y)) = in(t;dN(x, ¥9)
g€

and

(11 Bi(n(x), r) = n(Bx(x, 1)

for any xeN, yeN, and r > 0.
Comparing (9) and (11) we can conclude that if xe N and r < &(N), then
By(n(x), r) = By (n(x), r)n N. This yields the inequality &(N) < e(N).
Using equalities (6) and (10), we can show that
n” " (By (n(x), r)) = U By(xg, r)

gcG

6 — Annales Polonici Mathematici XLIV. 3.



320 P. G. Walczak

and
n~ ' (By(n(x), r)) = U Bu(xg, 1)

geCG

for any x and r. Therefore, if r <&(N) and xe N, then

U By(xg,r) =n" ' (Bg(n(x), r)) na™ 1(N)

geG

= U (Bu(xg, r)n N).
geG

If, in addition, r < 4d, then By (x,r)nBy(xg,r) =@ for any geG, g #e.
This implies equality (1) for any x of N and r < min(}d, ¢(N)). Consequently,
we have the inequality ¢(N) > min(4d, ¢(N)) which completes the proof.

Let us note that if M is compact, then the number 4 in (5) is positive.
Simple examples (geodesic lines on the cylinder and on the torus) show that
inequalities (5) need not be satished if N is not G-invariant and that
equalities &(N) = £(N) and &(N) = $d appear occasionally.

3. Let us recall that a submersion f: M —» B, where M and B are
Riemannian manifolds, is called Riemannian [7] if and only if |df (v)| = |v| for
any vector v of TM orthogonal to kerdf.

THeoreM C. If f: M - B is a Riemannian submersion with totally
geodesic fibres and M is complete, then £¢(N) = + x for any fibre N of f.

Proof. For any smooth curve y: (0;1)—> B, y(0) = x, y(1) =y, let us
define a mapping F,: f~'(x) »f '(y) as follows. If zef " !(x), then there
exists a curve 7y,: <{0;1>—>M such that 9.(0)=1z, foy,=y and
7.() Lkerdf (y. (1)) for any ¢ of <0;1). y. is uniquely determined by these
conditions and is called the horizontal lift of y. Put

F,(z) = 7.(1).

The mappings F, are diffeomorphisms and, according to [3], a necessary and
sufficient condition for F, to be isometries is that the fibres of f be totally
geodesic.

Let us take an arbitrary curve c¢: <(0; 1) - M and define a new curve
C: (0; 1> > M putting

C(0) =F, ' (c(),

where y,: <0; 1) = B is given by y,(s) = f(c(st)). It is evident that C lies on
the fibre f~'(f(c(0)). The vector dF,(C(1) is equal to the vertical
component of ¢(t). Therefore,

IC()] = [dF, (C@) <), re<0;1),
and

L(C) < L(o).
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The above argumentation shows that for any curve on M joining two
points of a fibre N of a submersion f we are able to find a curve on N which
joins the same points and is shorter than the given one. Therefore, if N is a
fibre of f and x, ye N, then

dy(x, y) <dy(x, ).

Our Theorem follows immediately from this inequality.

4. Assume that N is a submanifold of a Riemannian manifold M, the
Ricci curvature Ric,, of M is bounded by a positive number k from below,

and the diameter d(N) of N is greater than n,/m~ 1/\/1\ where m =dim M.

Let us take points x and y of N such that dy(x, y)>n/m— /\/k. If
¢: (0;1> > M is a minimal geodesic on M joining x to y, then according to
the well-known Myers theorem [6], L(c) < n\/m—1//k. Consequently, a
=dy(x, y)—dpy(x, y) >0 and

yEBM(xo dN(X7 Y)—h)"‘N—BN(x, dN(X, ,V)—b)

for any b of (0; a). In this manner, we established the following:

ProposiTioN D. If N is a submanifold of a complete m-dimensional
Riemannian manifold M and the Ricci curvature of M is bounded by a number

k > 0 from below, then either d(N) < n\/m—l/ﬂ or ¢(N) < n\/m—l/\/_

Replacing in the above argumentation the classical Myers theorem by
its generalization due to Galloway [1] we can generalize Proposition D as
follows:

ProrosiTioN D’. Assume that M is a complete m-dimensional Riemannian
manifold and that there exist constants k > 0 and c2 0, and a differentiable
function h: M — R such that |h| < ¢ and

Ricy, (v, v) = k+v(h)

for any unit vector v of TM. Then the inequality

min (d(N), &(N)) < (c+ JeE+k(m—1))

holds for any submanifold N of M.
Proposition D’ and Theorem C imply the following:

CoroLLARY. Under the hypotheses of Proposition D', any fibre N of a

Riemannian submersion f: M — B with torally geodes:c fibres satisfies the
inequality

(12) d(N) < 7 (e+/c?+k(m—1)).

>-|:a
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ExampLes. In the case of the Riemannian submersion f; P>"*!C — P"Q
estimation (12) (with ¢ = 0 and k = {(n+ 1)) is not informative: The fibres of
f are isometric to $? and have diameter equal to n while the right-hand side
of (12) equals n\/(4n—2)/(n+ 1) and tends to 2m as n — oco. The situation is
different in the case of the orthogonal group O(n) equipped with the
standard biinvariant Riemannian metric. If n <m, then O(n) is a closed
subgroup of O(m) and the projection O(m)— O(m)/O(n) is a Riemannian
submersion with totally geodesic fibres isometric to O(n). The Ricci
curvature of O(m) is constant and equals $(m—1)(m—2). From (12), it

follows that
d(0(n) < n/mj(m—2)

for any m > n. Passing with m to the infinity, we get
d(0(n)) < =.

On the other hand, d(0(n) > d(0(2)) ==. It follows that d(O(n)) == for
any n= 2.

5. Let F be a foliation of a Riemannian manifold M. If all the leaves of
F are compact minimal submanifolds of M, then F is stable, i.. the quotient
M/F is Hausdorff [8]. If X is an arbitrary subset of M saturated by compact
minimal leaves, then the quotient X/F need not be Hausdorff even if all the
leaves of F are totally geodesic. For example, if M = R xS' xS! (endowed
with the standard Riemannian metric), F is the 1-dimensional foliation of M
defined by the vector field

Z=t g + ¢
Tiax oy
where (t, x, y) are standard coordinates on M, and X =10, 1,41, 4, ... x

x §' xS, then X is saturated by closed geodesics but X/F is not Hausdorfl.
In [9], we proved the following:

ProrosiTioN E. If X < M is a set saturated by compact totally geodesic
leaves of a foliation F of a Riemannian manifold M and the function

(13) Xaxm—e(L,),

where L, denotes the leaf of F passing through x, is locally bounded by positive
numbers from below (i.e., for any x of X there exist a neighbourhood U of x

and a number a >0 such that e¢(L,) > a for any y of UNX), then X/F is
Hausdorff.

The converse is not true. For example, if F is the standard foliation of
the Mdobius strip M by closed geodesics (Figure 1), then M/F is Hausdorff
but the function (13) is not bounded from below by any positive number in

any neighbourhood of the “central leaf” L,. In fact, if LeF and
d(L, Ly) = a > 0 is sufficiently small, then ¢(L) = 2a.
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Fig. 1

Fig. 2

6. A manifold M with a projective structure can be equipped with a
projective invariant pseudometric d, (see [4], [5], [10]). If é,, is a metric,
then M is said to be hyperbolic. Let N be a submanifold of a hyperbolic
manifold M. If N carries the projective structure induced from M, then N is
hyperbolic and

On(x, y) = dy(x, y)

for all x and y of N. It follows that the balls By(x, r) = {ye N; dy(x, y) <r}
and By (x, r) = {ye M; dp(x, y) <r)} satisfy condition (2) for any x of N and
r > 0. One can expect that equality (1) holds for sufficiently small r in this
case. The following example shows that this is not true even if M and N are
domains on the plane.

ExaMPLE. Let us consider the situation described in Figure 2. M is a
convex bounded domain (a disc of the radius 2) on the plane. Therefore, M is
hyperbolic and the metric ,, is given by

(zy—t3)(z;—1ty)

omlan zz) =llog s — b
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where 1, and r, are the points of intersection of the boundary of M with the
line passing through z; and z,. Exactly the same can be said about the
domain N (a disc of the radius 1). Therefore,

B—a)(l+a+b)
(1+a)(3—a—b)

om(x, y) =log

and

1+5b
On(x, y) = longb'

It is easy to see that for any r > O there exists a point y of I N such that

6~(X, ,V) >r > 6M(xs }’)

References

[1] G.J. Galloway, A generalization of Myers theorem and an application to relativistic
cosmology, J. Diff. Geom. 14 (1979), 105-116.

[2] D. Gromoll, W. Klingenberg, W. Meyer, Riemannsche Geometrie im Grossen, Springer
Verlag, Berlin-Heidelberg-New York 1968.

[3] R. Hermann, A sufficient condition that a map of Riemannian manifolds be a fibre bundle,
Proc. Amer. Math. Soc. 11 (1960), 236-242.

[4] S. Kobayashi, Intrinsic distances associated with flat affine or projective structures, J. Fac.
Sci. Univ. Tokyo 24 (1977), 129-135.

[5] —, Projectively invariant distances for affine and projective structures, to appear.

(6] S. B. Myers, Riemannian manifolds with positive mean curvature, Duke Math. J. 8 (1941),
401404,

[7] B. O’Neil, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459—
469,

[8] H. Rummler, Quelques notions simples en géométrie riemannienne et leurs applications aux
Seuilletages compacts, Comm. Math. Helv. 54 (1979), 224 239.

[9] P. G. Walczak, On foliations with leaves satisfying some geometrical conditions, Dissert.
Math. 226 (1983), 1-51.

[10] H. Wu, Some theorems on projective hyperbolicity, to appear.

POLISH ACADEMY OF SCIENCES
MATHEMATICAL INSTITUTE

Re¢u par la Rédaction le 19. 10. 1981



