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On invariant measures for piecewise
C2-transformations of the n-dimensional cube

by M. JasronNski (Krakéow)

Abstract. It is shown that a class ol piecewise C>-transformations of [0, 1]" have an
absolutely continuous invariant measure.

1. Introduction. The purpose of this note is to show the existence of an
absolutely continuous invariant measure for a transformation t: [0, 1]"
— [0, 17" Our theorem is a generalization of results of A. Rényi [9], A. O.
Gel'fond [3], A. Lasota and J. A. Yorke [7] and W. Parry [8] to the
n-dimensional case. In our paper the transformation is not of the form as in
[9] or [12]. It is only piecewise continuous on the n-dimensional torus. The
proof of our theorem is similar to the proof of the theorem given by Lasota
and Yorke [7], but it is not a direct modification. For the proof of our
theorem we must define the variation of a function of n variables, establish a
lemma corresponding to Helly’s theorem and prove an inequality concerning
the behaviour of variation in a sequence of functions.

In Section 2 we recall certain basic definitions and state the main
theorem. In Section 3 we prove necessary lemmas and in Section 4 we prove
the theorem.

2. Existence theorem. Let [" = [0, 1]". Denote by L'(I" the space of all
integrable functions on I". The n-dimensional Lebesgue measure on I" will be
denoted by m,, and we write m,(dx) = dx = dx, ...dx,.

We say that a measurable transformation t: I" — I" is nonsingular if
m,(t~ ' (A4)) = 0 whenever m,(4) = 0.

For nonsingular t: I" — I" we define the Frobenius—Perron operator P,:
L' > L! by the formula

JP, fdx= | fdx,

Tt 1(A4)

which is valid for every measurable set 4 = "
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It is well known that the operator P, is linear and satishes the following
conditions:

(a) P, is positive: f 20=P, f >0;

(b) P, preserves integrals:

[ P fdx={fdx, felL';
In In

(c) P, = P; (* denotes the nth iterate of 1);

(d) P, f = fif and only if the measure du = fdx is invariant under 1, ie.
p(t~1(A)) = u(A) for any measurable A.

We shall not distinguish between functions f: I" — R delined on I" and
functions f: I" — R viewed as elements of the space L'. Which is naturally
the case, will become clear from the context.

Denote by [] 4; the Cartesian product of the sets A; and denote by P,
i=1

the projection of R" onto R"™' given by

P,-(xl, cany X,,) =(X1, cany X,-,,, .‘(,—+,, ceaq x").

Let g: A — R be a function of the n-dimensional interval A = [] [a;, b;] into

i=1
A

R. Fixing i, we define a function \/g of the n—1 variables

(Xys ooy Xi—g» Xj41s ---» X,) by the formula

A r
Va=\Vg=sup |} lgx;, ... X oo, X)=glxy, ..., xF74 o, x)):
1 t k=1

¢ <x)<...<xI<b,reN|.

n A
For f: A— R where A = [] [a;, b;] we define the variation V f as

i=1
A A
Vi=Vf=supV/f
where
A A
Vi=Vy
i i

=inf ' | \/ gdm,_,: g = f almost everywhere,
P4y i
' \/ ¢ measurable!.
i
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THeoreM 1. Consider a partition

P

U D=1 DinD,=Q for j#k,
n

of I" inta sets D; of the form D; =[] D, j=1,2,... p, where
=1

D'J = [a.-j, bl']) !f bU < l and DU' - [a.-j, bU] l_f bU == 1

Let t: 1" —I" be the transformation given by the formula

T(X1s ooy X0) = (@1(X1), ..oy @nj(X0), (X4, ..., x)€D;,
where ¢t [a;;, b;] — [0, 1] are C*-functions and
inf | inf |} > 1.
i lab,]
Then for any feL! the sequence

1 n—1
- Y Pf
Ny=o
is convergent in norm to a function f*€ L'. The limit function has the following
properties :
(1 J‘ 0 = f *20.

(2) ff*dm j'fdm

(3) P.f* =f* and consequently the measure du* = f*dm is invariant
under .

(4) The function f* is of bounded variation, moreover, there exists a
constant c independent of the choice of initial f such that the variation
of the limiting f* satisfies the inequality

Vit <clfil.

3. Auxiliary lemmas. Now we state and prove some lemmas, which will
be needed in the proof of Theorem 1.

The following lemma is proved in the standard way and therefore we
omit the proof.

Lemma 1. If f: A—= R is a function of the n-dimensional interval

A =[] [a, b] into R and g is given by
i=1

then for i #j
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LEMMA 2. Let S be a set of functions f: 1" — R such that
() f 20,

M VSsM,

@ Ifl<1.

Let f; be such that
[ Vfidm_ <V f+e (>0
pum '
and f; = f almost everywhere. Then for i=1,2,...,n

5 lim {sup m,_, (P;(B;y)} =0
k—ao fe§

where

(6) By, = U xel™ fi(x) = kj.

i=1

Proof. Suppose that there are i and a > 0 such that for any k there
exists f*eS with

M Moy (Pi(Bn ) > a.
From (g) we have

sup m, (By,) < 1/k.
feS

From this inequality it follows that there exists ko, such that for feS
(8) ma(Bya,) < /2.

Write H, = [0, 177! x [t} x[0, 1]"%, t€[0, 1]. For k > k, it follows from (7)
and (8) that there exists 1, €[0, 1] such that

m"_ 1 (H‘l M Bf"-"o) s a/z.
Since B,;, < B, for p> g, from the last inequality we obtain
[ \Vfikdm,_ = (k—ko) a/2 (k> ko).
P
This contradiction ends the proof.

LemMMA 3. If a set S of functions f: I" — R satisfies the conditions of
Lemma 2, then S is weakly relatively compact in L'.

Proof. We argue by induction on n the dimension of the cube. If n = 1,
the lemma follows from Helly’s theorem. Suppose the theorem is proved for
k < n. Fix ¢ >0 and define a set S by

1
S=1g: g=[f(0dx,, feS}.
0
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By the inductive hypothesis and Lemma 1 the set S is weakly relatively
compact. Therefore, by the Pettis—Dunford theorem, there exists 4, > 0 such
that

9) {gdm,_, <¢/2
F

whenever m,_, (F) < é,. Choose f; as in Lemma 2 and choose k, (this is
possible by Lemma 2) so large that

(10) m,_ (P (Bry)) <8, for feS.

Let 6 =¢/2k, and let E < [0, 1]" be such that m,(E) < é. From (9) and (10)
we have

[ fdm, = { fdm,+ } fdm,

En(P (B, ) x[0,1]) E\P,(B,, ) x[0.1)

< j (_ffdxl)dmn 1+2 ky <

k,
P(B;, ) O

Therefore, by the Pettis—Dunford theorem, the set S is weakly relatively
compact. Thus the inductive step is complete.

Let f: [] [a;, b;]— R and let A be a subset of the interval [] [a;, b;].
i=1 i=1
For this function and the set 4 we define a function \/f of the n—1

variables (x,,...,x, 15 Xit1s +-s Xp) DY
\/f_supl Z If(xlﬁ‘“y (RERERS n) f(xl"", 7“" xn)l:

4 <x)<...<xqKb;, (xq, .0 X oo, X)E A}

The following lemma is easy to verify.

LemMMA 4. Let A be a subset of the interval [a, b] and let a sequence of
functions f,: [a, b] > R converge to a function f: [a, b] = R pointwise on
[a, b]\A. Then

\ f < lim inf \/f,, < lim inf \/f,,
1,4

n—+x 1,4 n— o

and there exists a function f: [a, b] = R such that f = f almost everywhere on
[a4, bP\A and

\/f hmmf\/f,,

n—ao

LemMmA 5. If a sequence of functions f,: [0, 1]" = R converges to a
function f: [0, 11" — R in the norm of L', then

(11) V/i<limsup V7,

n—a
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Proof. If limsup V f, = x, the theorem is obvious. Assume that

n— @

lim sup V f, < co. Fix £ > 0 and let f, be such that f, = f, almost everywhere
and

§ Vidm_ <V f+e (=12 ..).

pam *

It is casy to verily that the sequence f, is convergent in measure. Therefore,
since m, ([0, 1]") < oo, there exists a subsequence f_,,j which converges point-
wise almost everywhere to a function / = f a.e. Denote by A the set of points
for which the sequence ﬁ,} does not converge. From Lemma 4 it follows that

there exists a function [ such that /' = f ae. and

\/f = lim inf \/ﬁ,}_.

n-x i

From this, by Fatou’s lemma we obtain

) \/fdm,,-, < liminf | \\:/j_’,,jdm,,_1

P(m ! R T
and consequently
[\ fdm,_, <lim inf V f, +¢.
Pim e

Since £ and i are arbitrary, this gives
V/f<liminf Vf, <lim sup \ -

which completes the proof.
Denote by & the set of functions of the form

n
where z,, is the characteristic function of the set 4; = [ [«;;, ;1 < [0, 1]
i=1
(we do not assume that a;; < f;;, the interval [a;;, f;;] can be degenerate) and
g;: [0,1]"> R is a C'-function on A;.
The following remarks are easy to verify.
Remark 1. The set & is a dense subspace of the space L'.

Remark 2. If ge& then for any i and for any 4 =[0,1]""! x[0, x;] x
4
x[0, 17"7F (x,€[0, 1]) \/ g is a measurable function of the variables

(Xgs ooy Xi 1y Xig1s -oes Xp).
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Remark 3. Let geé& and let I" = U B;, where B; = H [vij» 0151 and

m,(B,nB)=0 for k+# 1. Then \/ g are measurable functions and
[0.1J" r
V gdmn—l= Z j vgdmn—l'
PUn i j=1PB) 1
Remark 4. For any fe& there exists fe& such that

Yf= f \/fdmn—l'

pPm !
Remark 5. If fe& then V f< .
Let f: [] [a;, b;] =R be a function of n variables and g: [a;, b;] - R

be a function of one variable. Define a function h(t; xy,...,x;_y, X544,
.., x,) of the variable r (tefa;, b;]) and parameters x;,..., x;_q,
Xj41s +os Xn by

h(t;xl,... J 15 J+1,...,x,,)=f(x1,...,xj_1, t,xj+l,...,x,).
b.
Denote by | g(x)) d;f(x,, ..., X,) the Riemann-Stieltjes integral of g: La, b;]

a‘. .
— R with respect to the function h(t; x, ..., x;-y, Xj44q, ..., X,) Of the
variable ¢ on [a;, b;]. This integral is a function of the variables
(xl,...,xj_l,xjﬂ,...,x,,).r

4. Proof of the existence theorem.
Proof of Theorem 1. Write s = inf { inf |¢;jl} and choose a number

ij [a,, b,
N such that s¥ > 2. It is easy to see that the function @ = 1" satisfies the

assumptions of the theorem. Denote by B; = H [ci;» di;] the corresponding
partition for @.
Denoting by &,; the corresponding C?-functions we have

(12) |Pi;(x)| = s", xielcj,d;l, i=1,...n j=1,..9¢

Computing the Frobenius-Perron operator for ¢, we obtain

19 Pef(9= % SMule0. - byed) 010) -0 5) 1,09

where ¢, =¢,-}‘, 0y(x) =Iyj;(x) and yx; is the characteristic function of the
set I, = H ®;;([cij» d;;]). From (1) it follows that

(14) alj(xi) <s ~1 xle¢U([CU1 dl]])' i= 1’ TR j = 15 R

6 — Annales Polonici Mathematici XL1I1.2
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By its very definition the operator Pg is a mapping from L' into L', but the
last formula enables us to consider P4, as a map from the space of functions
defined on I" into itself.

Let f €& be a nonnegative function and let a function f; € & be such that
fi=fae and | \/fdm, ,= Yf. From (2) and (3) it follows that

Pam !
’ﬂ
(15 [ \/ Pofidm,.,
ram !
q "j
<Y | \/fi('/‘lj(xl)a oo Waj (X)) 045(xy). .. 05(x,)dm,_ +
=1 puy i
q .
+s7N Z f ('fi('ﬁlj(xl), e byjs e, 'I/nj(xn))|+

j=1 P)
+|j;'(|//1j(xl)a vy Gijy oeey !/’nj(xn))l) X
X 03;(X)... 0imy i (X ) Oray j(Xia 1) Opi(X)dm,_ .
In order to evaluate the first sum we write

1,
I \/fi('/’lj(xl)a ceey ll/nj(xn))alj(xl)"' Unj(xn)dmn-l

Pay) i

= I ( j! |di(j;'('»[’1j(xl)a R V/uj(xu))alj(xl)--- Unj(xu))

P'.(lj) cij

Jdm,

< [ (THWGGD, o Un D) 01y (61)- . 105N Gayea)dxs)dmy_ +

Pi(lj) i

+ § (fl 015 (X1)... O (i (W1j(x0), ..o Wnj (X)) dma_
Pi(’j) t'.j

< K ,‘-f;(wlj(xl)v (RS ) \I’nj(xu))alj(xl)"' anj(xn)dmn+
I,

+s~ N \7fi('l’u(x1)a ees Waj(xa)) X

P‘.(lj) i
X O'xj(xl)--- O'i—l.j(xi—1)0.'+1,j(x.'+1)--- anj(xu)dmn—l
max |o;; . . .
where K = ——l—il Changing the variables we obtain
min g;;

I,
(16) [ (VAW x0)s - s YD) 0150x1). . 05(x,))dm,_

PAL)

B.
<K [ fidm+s™ [ (\/f)dm,_,.
I.

P(B) i
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In order to evaluate the second term in (15) we write

(17 If.'('/’lj(xl)a ceey bija ceey '//nj(xu))l"'lfi('/’lj(xl)a cees Gijy - ey '/’nj(xn))l

1.

\J/f;(')blj(xl), teny wnj(xn)+2hl'j(xla HCRE ] xi—l’ xi+lv ----- Yn))

where

= inf {jl:('rblj(xl)a cees '/’nj(xn)): x.-e‘pij([cija dij])}-
On the other hand, we have the obvious inequality

' 4
(18) h; <b™! j'f,-(xl,...,x,,)dx,-
where b = min (|b;;—a;;|). From (17), (18) and Remark 3 it follows that

19 Y [ (£ Wy, s bijs oeos Wag(x0)| +

i=1 Pi(lj)
+|f. ({V2916.79 KUY N Wuj(xn))l) x
X alj(xl)-“ ai—l.}(xi— 1) 0.'+1,j(x.'+ 1)--- Unj(xn)dmn—l
'l
§ \/ fidm,_ 2671111,
L
Applying (19) and (16) to (15) and applying Remark 3 once more, we obtain
" "
I \/POJ;dmn—lsa”f”J"ﬂ I \/j;’dmn—l
pn ! pum !

where o = (K+2b ') and f=2s"¥ < 1. Thus, for feé and i=1,2,....,n
we obtain

?P@f «llfl+B °\’ f

with a <o and g < 1.
Now, for the same function f, let us write f; = P f. Since PY = P, we
have

Vka<a”fN(k il +8 mek n<allfll+p VfN(k 1)

and consequently

(20) lim sup V fy, <a(l=B)~'If1.
k—+x
From this inequality, the condition ||f;|| <|/f|| (which follows from (a) and

(b)) and Lemma 3 it follows that the set C = | fy,lszo is relatively weakly
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N-1
compact in L'. Since | ﬁ},ﬂockgo PC, the whole sequence {fi}i2, is

relatively compact. By Mazur’s theorem the same is true for the sequence

(21) {1 ) P‘f}
n,.<,

The subset of nonnegative functions of the space & is linearly dense in
L'. We have proved that for any such function f the sequence (21) is
relatively weakly compact. Therefore, we are in a position to use the
Kakutani-Yosida theorem (see [1], VIII.5.3) which says that for any fe L’
the sequence (21) converges strongly to a function f*, which is invariant
under P,. From (a) and (b) it follows that f* satisfies (1) and (2). Therefore it
remains only to prove (4).

Since the operator P, is given by a formula analogous to (13), it is easy
to derive the inequality

(0,1)" [0

ln
. Prf < C f+02"f"’

with some constants ¢; and c,. Thus, thc definition of variation and relation
(20) imply the inequality

lim sup {’ PEf<cellfll

k— o

(with a positive constant éj, which is valid for any fe&. Consequently, for
any such f we have also

limsupV( Z P"f) clifll.

k— o
l n—1
Writing Q = lim ~ Y. Pt and using Lemma 5 we have VOf <cllfll,
n—o k=1
for fe&. The operator Q is linear and contractive. We may therefore apply
Lemma § once more to extend this inequality to the closure of the set &, that
is, to all of L'. This finishes the proof.
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