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On a two-point boundary value problem
for differential equations on the half-line

by B. Przerabpzki (Lodz)

Abstract. In the paper the existence of solutions of the second-order ordinary diflerential
equations with a given value at 0 and vanishing at infinity is established by means of the degree
theory of DC-mappings. The equations do not involve the first derivative.

Introduction. We deal with the boundary value problem (BVP): x”

= f(x,t), x(0) =a, lim x(r) =0, where f is continuous and satisfies some
t—=®

other conditions. It is known that, for f strictly increasing and Lipschitz
continuous on bounded sets, the problem has a unique solution (see [4]). But
the existence of a solution needs weaker assumptions. In order to obtain the
existence theorems, one should get a prion estimates for solutions, replace
the BVP by an integral equation and apply the Leray-Schauder degree
theory (or the topological transversality method due to Granas [2]). The last
step is possible if the integral operator is compact. In the case of unbounded
domain (the half-line), the operator is usually noncompact, so one needs a
degree theory for a larger class of mappings. In the paper we use the theory
of DC-mappings and their degree (see [6], [7]) since the Leray-Schauder
theory can not be applied. For this purpose we have to get a priori bounds
for approximate solutions, and the existence of such solutions is obtained
after applying the homotopy arguments for the degree. An exact solution is
found by a kind of compactness.

In the last section, a singular BVP of Emden—-Fowler type: ¢(r) x”
= f(x, 1), x(0) =a, limx(t) =0, is considered.

t—a

The method we use in the paper is similar to and partially based on [3],
where only compact problems are considered.

1. General setting. Let /: R x (0, oc) = R be continuous and

(1) x(f(x,)=p*x) >0 for |x| > Ke™™.
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Assume that
(2 [f(x, ) < Cylx,
(3) [f (s )= f(x2, O < Cylx;—x,|

for x, x4, x,€{(—48, 8>, t > t,. The constants u, K, C,, C,, 4, t, are positive
and fixed.

THeoreM 1. Under these assumptions, the equation

4) X" = f(x, 1)
has a solution satisfying the two-point boundary condition:
(5) x(0)=a€eR, lmx()=0.

This solution tends to 0 at infinity not slowlier than Me ™' for some
positive M.

The proof is contained in Sections 1-4.

Let us consider the family of BVP:
(6) xX"=Af0, )+(1-Ap*x, x(0)=a, limx() =0,

" t—x

where 4 €0, 1). It is easy to see that the right-hand side satisfies (1)—(3).
The first condition is not fulfilled for A =0 but we shall use it only for
finding an a priori bound. When /. =0, the solution is ae™* and it is
bounded by a constant we shall obtain below.

Finding Green’s function for the linear differential operator Lx =
x"—u?x, we can replace (6) by

@®
w_ >

(7 x(t) = ae” [(e7#Is~! —e 4t (f(x(s), s)— pu? x(s))ds.
2;1. o

Take v €(0, ) and denote by X the space of functions of the class C? on
{0, oc) such that

(8) lime*|x(0)] =0, lime™|x"(t)] = 0.

t—w t =

Let

Ix]l, = supe™|x ()],
!

and let

lIxI] = max ([]x]l,, [Ix"]l,)

be a norm in X. One can show that X is complete and separable.



Two-point boundary value problem 55

Denote by A the integral operator in (7). Using (2), we see that if x
satisfies the first part of (8), then, for sufficiently large ¢,

e |Ax () < (P +Cp) [ M (e —e™ ™) |x(s) ds+
o]

X
+ (e TH— T [T |x (s)] ds].
{

By the 'Hospital theorem, both summands on the right-hand side tend to 0.
Moreover, Ax is twice differentiable and

9) (4x)"(1) = 1> (A% ()= 2p(f(x (1), 1) = > x (1)),
so Ax satisfies the second part of (8). Hence we can consider equation (7)
within X.

LeEMMA 1. The operator A: X — X is continuous.

Proof. It is sufficient to show the continuity of the Niemytzki operator
x> f(x(-), ) with respect to the norm ||-||,. Let xeX and 7, > 14 be such
that |x(r)] < !0 for ¢t = t,. Obviously x is bounded, |x(f)] < M,.

Take & > 0. There exists n > 0 such that, for x,, x,€{(—2M,, 2M >.
[x; —x,] <y and ¢ <14,

|f (s )= f(xq, O Sge” M1,

Then, for any yeX such that ||[y—x||, < min(}4, 1, eC5 "),
e |y (1), )= f(x(0), 1)) <.

The continuity of the linear integral operator is a consequence of
standard calculations. Applying (9), we get the assertion. (O

2. A priori bounds. The a priori bounds technique, introduced by
Bernstein [1] and developed by many authors (see [3]), becomes complicated
if we deal with approximate solutions. We shall see that this leads to a priori
estimates for solutions of differential inclusions. The technical difficulties
cause we restrict ourselves to equations not involving the first derivative.

Let us first notice that (1) implies

max (K, (1> —v?) e ™,

flx,t)=2vix+e ™ for x>
fx,)<vix—e ™ for x < —max(K, (@2 —vH) " e ™.

(10)

Let x,(t) = ae™*. Suppose that

(1) ”x Xo+ - Ax“<c
R
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where & <(1+pu?)~'. Then

y)
X—Xo+ — Ax

<e
| i
and
/.
x"—lf(x(-),-)—(l—}.)p2x+u2(x—x0+ﬂAx) <E.
Hence
(12) ”x”—g(x(')’.)”v <& <1

where g(x, t) = Af (x, )+ (1 =) pu? x and &, = (1 + u?)e. Obviously g satisfies
(10). By (11), |x(0)—a| <&. An a priori bound for an &-solution is given by

LEMma 2. If xeX satisfies (12) and |x(0)—«a| <¢, then
fixll, < max(K, (12 —v})~", Jal+¢) =: K.

Proof. Suppose on the contrary that ||x||, > K,, and define y(¢)
= ¢" x(t). Then y has a maximum y(t,) > K, or a minimum y(t,) < — K, .
We shall consider the first possibility.

Since y'(¢t;) =0 and y"(t,) <0, then, by (12) and (10),

0= y"(t)) = (x"(t;) — v x(t,))e"!

> [g(x(t,), t;)—ere " =vix(t;)] e = 1—¢; > 0.

The case of the minimum leads to a contradiction in the same way. [

Having an a priori bound on x, we get, by (12), an estimate on ||x"||,.
Therefore (11) implies ||x]] < M for a certain M.

3. Information on DC-mappings. In this section, X stands for an arbit-
rary normed space. All results are proved in [6]. We shall quote only those
which are used in the sequel.

Let (X,)..n be a sequence of finite-dimensional linear subspaces of X

such that X, < X,,,, neN, and cl |J X, = X. Such a sequence is called a
ne N

filtration in X. Let V be an open bounded subset of X. Then cl |J (clVn X))

neN
=clV.

We shall say that A: clV— X is a DC-mapping (with respect to the
filtration (X,)) if 4 is continuous and

lim sup d(Ax, X,)=0

n—>wo xecV nX,

where d(-,") stands for the distance between a point and a set.
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The class of DC-mappings contains the identity and the family of
compact operators and it is a module over the ring of continuous bounded
scalar functions. The last property makes the theory of DC-mappings better
for applications. There are advantages but there are disadvantages, as well.
DC-mappings are often not closed, so the theorems on solvability of equa-
tions involving such operators are of the form inf||Ax—y|| = 0.

X

APPROXIMATION LEMMA. For any DC-mapping A: clV—=X and ¢ >0,
there exists a continuous mapping A,: clV— X such that

|4, x— Ax|| <e, xe€X,
and A,(clVn X,) < X, for sufficiently large n.

The notion of the degree is based on this lemma. Let

$=[1z/®Z,
neN  neN
let A: clV— X be a DC-mapping and y e X \clA(dV), where &V denotes the
boundary of V. Take a mapping A, from the lemma for £ = }d(y, cl A(CV))
and a point y, € X,  such that ||y, —y|l < :¢. We can assume that the second
property of A from the lemma holds for n > ny. Then y, € X,\ 4, (d(V n X))
(the boundary in the topology of X,) for n > n,. We can define a sequence of
Brouwer degrees

s, =deg(A,| clVnX,,VnX,, y)

for such n. Putting s, = 0 for n < n, and taking the equivalence class [(s,),.n]
in the quotient group %, we get the definition of the degree of DC-mapping
A on Vat y:

DCg (A, V’ }’) = [(sn)neN]-

The definition is independent of the choice of y, and 4, and the degree
has many standard properties. We shall use:

(1) If H: {0, 1>xclV = X is a DC-mapping (the filtration in <0, 1) x X
is (€0, 1> x X, )aen) and yeX\clH(0, 1) x V), then

Deg(H (0, -}, V, y) = Deg(H (L, ), V, y).
(i) f A: clV—>X is a DC-mapping and the degree Deg(A4, V. y) is
defined and does not vanish, then

inf ||[Ax—y|| = 0.

xeV

(iii) If A: clV =X is compact and yeX\(I— 4)(ZV), then
Deg(I_A’ V’ }’) = [(S,,)],
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where s, =deg,s(I—A4, V, y) for neN, the Leray-Schauder degree of the
compact field I —A.

4. Application of DC-mappings to the problem. In this section we shall
see that there exists a filtration in X with respect to which the integral
operator

Ax(t) = T(e"‘""'—e"‘"*”)(f(x(s), s)—u? x(s))ds
0

is a DC-mapping on the closed ball B(0, R). Let Y denote the space of all
continuous functions x: <0, oc) = R such that

lIx|l, = supe* |x (1) < 0.
1

Our considerations are based on the compactness of 4 as a mapping of any
bounded set in Y into X.

LemMMA 3. For any R, >0, A transforms the closed ball B—,‘(O, R))inY
onto a precompact sef in X.

Proof. It is rather obvious that D = 4(B,(0, R,)) sits in X and is
bounded. Moreover, standard calculations show that functions from D are
equicontinuous on any bounded interval. Let t, > ¢, be such that R, e <&
for t > t,. Then, for such a r and x€B,(0, R)),

e |AX(D)] < "M [CH(C, +42) 6 [(1—e™ ) ds]+

1

ac
+(e(v+u)t _e(v—n)!)(cl +#2)(5 " e_z‘”ds,
t

where C is a bound of the integral on <0, t,). It follows that

lime” Ax(t) =0

t—~®

is uniform with respect to x€B,(0, R;). By (9), the same is true for (Ax)".
Combining the above with the Arzela~Ascoli Theorem, we get an ¢-net
of D for any positive &. '

Now, note that YN X is dense in X. Hence e-nets can be taken from
Yn X, and

cl ) B(0, R)nB,(0, nR) = B(0, R)

neN

(the closure with respect to X). For neN, take a finite dimensional subspace
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X, < Y X such that
(13) sup |d(Ax, X,): xeB(0, R)ynB,(0, nR)} <n™'.

Enlarging X,, if necessary, we can assume that X, < X,,, and cl{) X, = X.
This 1s possible, since X is separable. Therefore (X,) is a filtration in X and,
by (13), A: B(0, R) » X is a DC-mapping.

Let R > M where M is the a priori bound from Section 2, and let
H: <0,1>xB(0, R) > X be given by the formula
i
2u
Then H i1s a DC-mapping and, due to Section 2,

IH(4, x)I| =& >0

H(A, x) = x—Xxo+ — Ax.

for xedB(0, R) and 4ie<0, 1. By (i), Section 3,
Deg(H (0, ), B(0, R), 0) = Deg(H (1, -), B(0, R), 0),

but H(0, x) = x—Xx, is a compact field with the Leray-Schauder degree
1 (xo €B(0, R)), so, by (1i1) and (u1), Section 3,

inf||H (1, x)|]| = 0.

Therefore we get a sequence (x,) of approximate solutions of (7) in X (4 = 1).

Repeating the arguments from the proof of Lemma 3, one can choose a
subsequence (x,) such that (4x,) is convergent with respect to the norm
Il"lo, 1. uniformly convergent. It follows that (xp,) 18 uniformly convergent
to a certain x and, therefore, x satisfies the integral equation (7) for 4 =1
which is equivalent that x is a solution of the BVP (4), (5).

We do not know, a priori, that x €Y, but changing the proof of Lemma
2 shghtly (it is simpler for exact solutions), one can obtain that

lIx]l, < max(K, Jaf).

5. Remarks. The present work is based on the comparison of the right-
hand side of the differential equation with the simplest linear function u? x.
This is impossible in many important cases, for instance the Thomas—Fermi
equation. However, 2 x can be replaced by functions g such that solutions of
x" =g(x) are known and simple.

Similarly, one can consider another BVP at 0 instead of the Dirichlet
one. It is needed only to know Green’s function. However, the described
method works only for functions -vanishing at infinity.

The solution of our BVP is unique if f (-, t) is increasing for any r (see
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[3], [5], [8]). The uniqueness can be obtained in special cases for small « by
the Contraction Principle or other methods.

6. Singular boundary value problems. Let us consider the equation
(14) (M x" = f(x,1)

with boundary conditions (5). The assumptions on f are the same as above
(1)3). Let ¢: <0, o) =R be a continuous function such that

(15) 00 =0, o@@{)>0 fort>0,
(16) supp(t) =a <o, infe()=5b>0,
t 1210
(17) o(t)"' has an integrable singularity at 0.

THEOREM 2. Under the described assumptions, the BVP (14), (5) has a
solution.

Proof. Each of the problems

(18) [A=n"YHYe®)+n ']x" = f(x,t), x(0)=a, imx()=0

t—=w

for n = 2 has a solution. In fact, the functions
gulx. )= f(x, )/[(1=n"He+n"]

satisfy assumptions (1)-(3) with x = u/max(l, \/:1), C; = C;/min(l, b)
for j =1, 2. Denote by x, a solution of (18). We know that
supe*'|x, ()] < M,
t

where M does not depend on n. It follows that lim x;(t) =0 or there is
t—w
some ¢, such that x,(t,) = 0.

In the first case,

%O = | [ gn(x4(5), 5)ds| < Lmax(1, b~1)-max(to—t, 0)+C; Me™ ",

where L =sup!|f(x, )] t€0,t,), |x] < M). The second possibility is

examined in the same way. Thus the functions x,, n > 2, are uniformly

bounded, equicontinuous and the limit lim x,(t) =0 is uniform. Repeat-
{—

ing the arguments of the proof of Lemma 3, one can show that there is a
subsequence (x,) uniformly convergent to x.

On the other hand, each of x, satisfies the integral equation of form (7)

where yu is replaced by u' and f by g, . Passing to the limit k = oo (it is

admissible by the boundedness of ¢(r)~' on <{tq, oc) and by the integrability
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of this function on (0, 1,)), we get that x satisfies the integral equation
equivalent to the BVP (14), (5). o

In general, the solution x is twice differentiable only for r > 0: on the
closed half-line <0, o0), x has the first derivative continuous.

The method we use in the proof works also for BVP on intervals. In this
way, one can simplify the considerations from [3], III, §3.
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