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On a boundary value problem
for an equation of the type of non-stationary filtration

by JAN Goncerzewicz (Wroclaw)

Abstract. In this paper we consider a boundary value problem with non-continuous
boundary data for the equation u, = [¢(u)],,- We examine the existence, uniqueness and
regularity properties for a certain class of weak solutions of that problem.

Introduction. Let S; denote the half-stripe (0, o0) x(0, T] in the (x, t)-
plane for some fixed T > 0.

By C'*?, for non-negative integers ! and ae(0, 1) we shall denote:

(a) In the case of functions of variables x, 1 — the space of functions f
whose derivatives of the form (J/0x)*(d/Ct)f, where 0< 2r+s <!, are
bounded in the maximum and Holder norms (cf. [3]).

(b) In the case of functions of one variable — the space of functions,

whose derivatives up to order ! are bounded and the I-th derivative is
Holder continuous with the exponent a.

We shall consider the following problem:

(M 4 =[oW). in Sp,

2 u(x, 0) = ug(x) for xe(0, o),
(3) u(, t) =u,(t) for te(0, T,
where:

(1) for some a€(0, 1) we have ¢ e C} ([0, 0 ])nC?**([s,, 5,]) for every
0<s51 <55 (0 =9 (0) =0, @(s) >0, ¢1(s) >0, ¢”"(s)>0 for s> 0,

1
(1) § [¢'(s)/s)ds < 0,
(IMT) ugeL™((0, o0)),  infess ug(x) =0, u,eL®((0, T])nC((O, TI),

xe(0, o)
U, > 0.

Equation (1) is a degenerate parabolic equation: it is parabolic for



P
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u>0, but it is not if u =0. When ¢(s) =s™, m > 1, equation (1) describes
flows of gases or fluids in a porous medium.

Problem (1){3) was studied by many authors: see [8], [9], [11] and
references therein. In [11], Oleinik, Kala§nikov and Yui-Lin examined a class
of continuous in Sy weak solutions of problem (1)-(3). In this paper we study
a class of weak solutions, which are continuous only in [0, ov) x (0, T].

DerinTiON. A function u will be called a weak solution of problem (1)H3)

if:
(i) u is non-negative, bounded and continuous in [0, o) x(0, T],
(i1) u satisfies the identity
xq t2 x9 . ty
(@ § § Vutfuo@ldxdi— § ful2dx~ § fp()|32dr =0
x) ll xl ll

for all 0K x; <Xx3, 0<t; <t, < T and for all feC>'([x,, x;]1x[t;, t2])
such that fi,_, = fli=x, =0,
(1) u(0, t) = u,(t) for te(0, T] and

(5) lim u(x, t) = ug(x)

»o+
for almost all xe(0, o0).

Note that classical solutions of problem (1){3) are also weak solutions
of problem (1){3) in the sense of the above definition.

ExaMmpLE. Consider the following problem

(6) (¢’ (W H)+4nh' =0 for 0 <7y < oo,

(7 h(0) = c, "hg h(n) =0,

where the mark ' denotes differentiation, h = h(n), ¢ > 0, and ¢ satisfies
assumptions (I) and (II).

It was proved in [2] that there exists a unique weak (in a suitably
defined sense) solution h of problem (6)+7), which has the following prop-
erties: (i) h is bounded, continuous and non-negative on [0, o), (ii) H(n)
= @(h(n)) has a continuous derivative H' on [0, ), (iii) there exists a
positive constant a = a(c) such that h(n) > 0 for 0 < n < a and h(y) =0 for
a <n < o, (iv) h is a classical solution of equation (6) in a neighbourhood of
any point where h > 0.

Put

@) 7 (x, t) = h(xt™ 1%

for x > 0 and 0 <t < T. The function #, is a classical solution of equation (1)
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in S;—{(x,t): xt™"2 =a}. It is easy to verify that i, is a weak sclution of
problem (1)}+3) satisfying the boundary data

uUg(x) =0 for 0<x<oo, u,(t)=c forO0<t<T

The following lemma will be useful in Section 3.

LEMMA 1. Let h be the solution of problem (6)+7) mentioned above. Then
(n) <0 for 0 <y <a.

Proof. The result follows immediately from the formula

@ (hm) ' (n) = —F(nh(m+ j h(e)ds) for 0 <7y < a.

In the paper, in Section 2 we prove the uniqueness of a weak solution of
problem (1)H3). The existence of a solution of problem (1)«3) in the
considered class of weak solutions is proved in Section 3. We also obtain
some regularity properties of this solution. In Section 4 we estimate from
below sup {x€e(0, o0): u(x, t) > 0} for te(0, T].

2. Uniqueness. We shall prove the following theorem:

THEOREM 1. Let hypotheses (I) and (IV) of Section 1 be satisfied. Then
there exists at most one weak solution of problem (1)}-3).

Proof. Let u and u* be two weak solutions of problem (1)+3) and
x T

let ge C3 (Sy). We shall show that { | (u—u*)gdxdt = 0. Choose a number
g0

ro such that g =0 for x >ro—1 and set in identity (4): x;, =0, x, =7, ¢,
=1,t, =T where r>ry,, 0<1 < T Then for each feC*!([0, r] x[z, T])
such that f|,_o = f|,—, =0 we have

r T r
© [ [ @—u)f+alx, 0fldxdi— [ f@—u*)|i-] dx—-
0z 0

T
—(I)fx[tp(u)—qo(u*)] |, dt=0,

where
e —pW*) . .
(10) a(x, t)={ u—u* i u # u,
@’ (u) if u=u*

for (x, t)e[0, 0) x(0, T]. Note that a = a(x, t) is non-negative, bounded
and continuous on [0, o) x(0, T].
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Let a, for n =1, 2, ... be positive C*(Sy) functions such that a, - aif n
— oo uniformly on every compact subset of [0, ©)x(0, T] and a,>= a in
[0, r]1 x[r, T. Putting, in (9), a =(a—a,)+4q, for n=1, 2, ... we obtain

r T r T
(1) [ f@—un)fi+a,(x, 1) fr)dxdt+ | | (u—u*)(a—a,) f dxdt —
01 01

- [fu-un 2 - If,[co(u)—rp(u")] oy dt =

for r>ry, n=1,2,... and for all feC“([O, r] x[t, T)) such that f|,_,
= fli=r =0.
Consider, for given r > r, and n > 1, the following *problem:

(12) fita,(x, 0 fix=9g in [0, r]x[z, T],

(13) f|x=0 = f|x=r = f|t=T =0.
It follows from Theorem 7 of [3], p. 65, and Theorem 10 of [3], p. 72, that
for each r > ry, and n > 1 there exists a unique solution f™" = f™"(x, 1) of

problem (12)«13) such that f*" e C* ([0, r] x [z, T1). Moreover, the following
estimates hold:

(14) ™ (x, )l SCe™* for 0<x<r,t<t<T,
(15) lf&(r, t) < Ce””  for te[z, T,

r T
(16) § T aa(x, D(f5) 3 dxdt < Cs, .
01

where the positive constants C,—-C; do not depend on n, r, t. The proof of
estimates (14)(16) is analogous to the one given in [6] and we omit it.

If we apply identity (11) to the functions f™ forr 2 roand n=1, 2, ...
instead of f, we obtain

r T r T r
(17 [ [Ju—u*gdxdt+[ | (u—u*)(a—a) f dxdt+ [ ™ (u—u*)| _ dx+
0r (13 4 1]

T
+ [ £ Lo (W) — @u®)] lx=r dt =

forr>roand n=1, 2, ... Hence, using estimates (14), (15) and (16) and the
Schwartz inequality, we have

r T
/2
(18) ff(u—u*)gdxdt s(ff(u u*)z( dxdt) Ci?+
0
+C, Ie“lu(x, ) —u*(x, 1)|dx+Cre™" j lo(u(r, 0)— o u*(r, n)de
0 T
for r=>r, and n=1,2,... Let n—>o0 in (18). Then, since (a—a,)%/a,

<2 sup |a—a,} we have
{0.r] X[£.T]
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(19 | ]' } (u—u*)gdxdt|
0

r

T
< Cy e u(x, )—u*(x, dx+Cye™" [ |p(u(r, 0))— @ (u*(, )| dt
1] T

for r 2 r, Hence, in the limit (as r — o),

a

w T
(20) | | § (u—u*) gdxdt] < Cy | e™*|u(x, 1) —u*(x, 1) dx.
0« 0
Inequality (20) holds for all 0 < t < T. It follows from condition (5) that
lim (u(x, t)—u*(x, t)) = 0 for almost all xe(0, o). Then, from (20),

T
[» &)
0

what holds for each ge C§ (Sy). Hence u = u* in S;.

Remark. It follows from inequality (20) that Theorem 1 remains true if
we assume, instead of (5), that

(u—u*)gdxdt =0,

Oty

(5) lim | |u(x, 1)—uo(x){dx =0

tmot J

for every finite interval J < (0, o0).

3. Existence. In this section we shall use the following transformations
of non-negative classical solutions u of equation (1), introduced in [11]:

v=0), w=yu),

where Y (s) = j’ Lo’ (&)/E]dE for s> 0.
0

In view of hypotheses (I) and (II) of Section 1 there exist the
inverse transformations @, ¥, such that ¢(®(v))=v, Y (¥(w))=w and
@, ¥eC([0, w))n C*((0, %0)).

THEOREM 2. Let assumptions (I}(111) of Section 1 be satisfied. Moreover,
assume that uq is a piecewise continuous function and u,(t) = ¢ > 0 for some
constant ¢ and for te(0, T], or uy(t) =0 for te(0, T). Then there exists a
weak solution u of problem (1)«3). It is a classical solution of equation (1) in a
neighbourhood of any point (xq, to) €Sy, where u(x,, ty) > 0.

Proof. We follow the constructive method given in [11]. Putting v
= @(u), we transform equation (1) to the form

Vyy = @' (v) V.

Write v, = @ (o), v, = @(u;) and let M > max {sup ess vy, sup u, }. Without
loss of generality we may assume that v, is upper semi-continuous (in view of
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Theorem 1 we can suitably redefine the function v, at discontinuity points).
In view of the assumptions imposed on u, and u, it is possible to
construct sequences of functions {v,,} and {v,,} such that

(i) vo,eC*([0, o)), v,,€C” ([0, T]) for k=2,3,...,
(1) vgy — Vg, V34—V, @S k — 00,
(1i1) Vop+y < Vous> Vig+g SV, for k=2,3,...,
(iv) k' <o <M, kT <o, <Mfor k=2,3,...,
(V) vop. =M on [k—1,k] for k=2,3, ..,
(Vi) 94(0) =v,,(0) for k=2,3,..,

& &
(vii) (E Vo )(0) = ( 2 Uy )(0) for j=1,2and k=2,3,...

For a given integer k > 2 we consider the following problem:

(21) Vs =P (v)y, in Q, =(0, k)x(0, T],
(22) v(0, ) =vy,() for tef0, T],
(23) b(x, 0) = vos(x) for xe[0, o),
(24) vk, ) =M for tef0, T].

Since the boundary data (22)+24) are strictly positive, it follows from the
theory of non-degenerate parabolic equations [10], p. 640, that for each
integer k > 2 there exists a unique solution v, of problem (21}+24) such that
v, €C(Q,) n C***(D) for every compact subset D = Q,. Moreover, we obtain
from the maximum principle that k™! < v, < M and v;,, <y, in @, for &k
=2,3,...

Put u, = ®(v,) for k = 2, 3. ... The functions u,, for k = 2, 3, ..., satisfy
equation (1) and @k ) <u, < PM), u, .y <y, in Q,, for k=23, ...

Hence, for every (x, t)e Sy, there exists lim u,(x, t) = u(x, t). It is clear that
k

u is non-negative and bounded on Sy, u satisfies identity (4), u(x, 0) = ug(x)
for almost all xe(0, ) and u(0, t) = u,(t) for te(0, T].

In order to prove the continuity of 4 in S; consider the functions w,
=y (u) for k=2, 3, ... The functions w, satisfy the equation

(wt)l = Ak (X, t) (wk)x.: + Bh (x, t)(wk)x

in Q,, for k=2,3,..., respectively, where A,(x, t) = ¢'(¥(wi(x, 1))) and
By (x, t) = (W), (x, t) for (x,t)eQ, and k=2,3,... Let k>2 be a fixed
integer and let D c Q, be a closed rectangle. We have A,, B,, (4),,
(B)x€ C°*#(D) for some Be(0, 1). Hence, by Theorem 10 of [3], p. 72, we
obtain (W,),xx € C°*#(D). Thus (w,)..x€C(Q)) for k =2, 3, ... It follows from
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the proof of Theorem 2 of [7], p. 66, that if 4 > 0 and 0 <t < T, then
(25) I(wi), (x, ) < C

for (x,0)eQ,_,N[d, o)yx[t, T] and k=2, 3, ..., where the constant C
depends only on 8, 7, Y (®(M)) and ¢'(®(M)). Hence, if 6 >0and 0 <t < T,
then

(26) o wlx )—w (X, gl < Clx— x|

for (x, t), (x, )eQ,-1Nn[d, ©)x[z, T] and k=2, 3, ..., and, by the result
of [4],

(27) Wi (%, )—wi(x, O < C'le—1t)"7?

for (x, 1), (x, t)eQy-1 N [J, ) x[r, T] and k =2, 3, ..., where the constant

C’ does not depend on k. Since (26) and (27) holds also in the limit as k

— o0, then w = (u) is continuous in Sy and the same is true for u.
Now we prove that u is continuous up to the boundary {0} x(0, T].
Let t5€(0, T] and u,(t;) =0. Since u >0 and y, > u for k=2,3, ...,

then lim u(x,)=0 and lim u(x,)< lLim u(x,t)

(x.1)—(0.tg) (x.0) ~(0.tg) (x.0)=(0,1()
= ®(vy,(to)) for k=2,3,... Hence, in the limit (as k - cv), we obtain
lim u(x, t) <0 and therefore Iim u(x,t)=0.

('»')_’(Ov'o) (xv‘)_’(ou’o) N .
Assume that u,(t) > c > 0 for te(0, T]. Then the following lemma is

valid.

LemMA 2. Let 0 < ¢’ < ¢ and let i, be the weak solution of problem (1)+3)
defined by (8). Then u. <u, for k=2,3, ...

Proof. Write, for simplicity, # =i, and suppose that i(xq, to)
> Uy (xg, to) at some point (xq, ty) € Q, for some integer k > 2. Since u, < 4,
if k' > k, we can assume that k > a(c’) T'/2. Then, in view of the continuity
of # and u, at (x,, to), there exists ¢ > 0 such that #(x, t) > u,(x,t) for
(x, )eR, = [xo—@, xo+ 0] x[to—0, to+(T —to) 0]. We have u(0, 1) =’ and
4,(0, 1) =2 ¢ > ¢’ for te(0, T]. Morcover, in view of Lemma 1, ii(x, f) < ¢’ for
(x, ) eSy. Tt follows from the uniform continuity of u, that we can choose a
number 0 <7t <t,—¢ such that u(x,1)>c for xe[0, a(c)t'/*]. Since
d(x,7) =0 for x> a(c)t'/? we have u,(x, 1)—ii(x, 1) = 0 for xe[O0, k].

As in the proof of Theorem 1, for each feC*! ([0, k] x [t, T7]) such that
f|x=0 =flx=k =0 we have

kT k

(28) j j(“k"'a)[f:"'ak.u(x, 1) frx] dxdt — If(u"—ﬁ)I::,de+
01 0

T ¢ T
+ [felow)—e@]1|,_odt = | filo)—o@]|,_, dt+

kT
+ | | =) (ay,.—ay) fredxdt,
or
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where

U —u

{ ew)=—e@ 0 L
a(x, t) =
@’ (i) if w =14

for (x,neQ, and gq,, for n=1,2,... are positive C™([0, k)x[z, T])
functions such that g, , \ g, if n — o0. Instead of (12)(13) we consider, for a
given n = 1, the problem

(29) fitaualx, ) fex =g in [0, k] x[z, T],
(30) Slx=0= Sle=x = S=r =0,

where: ge Cg'(Q,) is a non-positive function such that g <0in R,;, g =0in
0.— R,». Denote by f “" the solution of problem (29)(30) and n> 1.

Note that for f*" n > 1, estimate (16) in which r = k and a, = g, , hold
true. Moreover, from the maximum principle [3], p. 34, we have /%" > 0 for
n>1. Since f*"(0,t)=0, f™*(k,t)=0 for te[t, T] and n>1, then
kn(0, £) > 0 and f™*(k, 1) <0 for te[r, T], n> 1. Putting in identity (28)
the functions f*" for n=1, 2,..., instead of f we obtain

kT k T
GV [ [ -Dgdxdi+ [[*"=D),. dx+ [£2" [96)~ @], odt

T kT
= [ fe o) — @ @]e=sdt + | | (u—iD)(@n—ay) fl" dxdt
t 0t

k T
for n=1,2,... Since [f*"(w—d)|_ dx>0, [f¥"[o(uw)— @] |,_odt=0
1] 4

T
and [ fM*@(u)l,=,dt <0 for n=1,2,..., then, from (31) and (16),

kT kT )
1/
J J‘ (uy— ) gdxdt < C3/? ( '[ j —i)? (a"; dxdt )
k,n

0 0 =t

for n=1,2,...

kT

Hence, passing to infinity with n we obtain _f j' (uk—li)gdxdt 0. But

kT

in view of the choice of the function g we have | [(u,—i)gdxdt >0,
0«

This contradiction ends the proof of the lemma.
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Let toe(0, T]. It follows from Lemma 2 that u is strictly positive in
some neighbourhood of the point (0, t,). Therefore, using the standard
barrier method for non-degenerate parabolic equations ([12], p. 123), we
obtain that u is continuous at the point (O, t,).

Using the fact that 4, \x u we can prove, by the barrier method, that u is
continuous up to the boundary ¢t =0 at every point of continuity of uy,
which proves condition (S). The proof is analogous to the one given in [5]
and we omit the details. '

Finally, let u(x,, to) > 0 at some (x,, to)€S7. Then u,(x, t) > Lu(x,, to)
for (x,t)eR, =[xo—0, xg+0])x[to—a, to+(T—ty)a] for some ¢ >0. It
follows from Theorem 1.1 of [10], p. 476, that there exist constants C” > 0
and ye(0, 1), which do not depend on k, such that

e (%, )= (X', 1) < C7(Ix— X"+t —1]"?)

for (x, 1), (x', )eR,;,. Then, by Theorem 15 of [3], p. 80, the sequence {v,}
is compact in C*'(R,,). Hence u is a classical solution of equation (1) in
R,;4.

Remark 1. If ¥ is uniformly Hélder continuous with an exponent
ve(0, 1] on [0, o0), we obtain from (26) and (27) thatif 6 >0and 0 <1 < T,
then

(32) lu(x, D—u(x, ) < Cllx—x1"+[t—r"?)

for (x, 1), (x', t')e[J, ) x[1, T] and some constant C. In particular, if ¢(s)
=s™ m> 1, then Y (s) = [m/im—1)]s™ !, ¥ is uniformly Hélder continuous
with the exponent v = min {1, (m—1)"'} in [0, o), and u satisfies (32). In
this case inequality (32) follows also from the results of [1] and [4].

We shall prove the following regularity theorem:

THEOREM 3. Let the assumptions of Theorem 2 be fulfilled and let u be the
weak solution of problem (1)+3). Then the derivative ¢(u), exists and is
continuous in S;. Moreover, if 6 >0 and 0 <1 < T, then

(33) lo () (x, D < Cu(x, 1)

for (x, t)e[8, o) x[t, T, where the constant C depends only on 3, T and
v (®(M)), ¢'(P(M)) arising in the construction of u from Theorem 2.
Proof. Let u be the weak solution of problem (1)-(3). By Theorem 2,
¢(u), exists and is continuous in a neighbourhod of any point (x, t)eSy,
where u(x, t) > 0. Moreover, in view of the uniqueness Theorem 1 and the
construction given in Theorem 2, if (x, t)eS; and u(x, t) > 0, then

(P(u)x(x’ t) = h:n (p(uh)x(xs t),



302 J. Goncerzewicz

where u,, for k = 2, 3, ..., are strictly positive classical solutions of equation
(1) such that u, »u as k- o,

Let 5 >0 and 0 <t < T. Since ¢ (u), = (¥ (¥ (w))),, by (25) we have
(34) | ()< (x, B)| < Cuy(x, 1)

for (x, )eQyn[d, ©]x[1, T] and k=2, 3,..., where the constant C de-
pends only on 4, 7, and ¥ (¥ (M)), ¢’ (@ (M)) from the construction of u given
in Theorem 2. Hence, if (X, to) €Sy and u(xg, ty) = 0, then lim ¢ (), (xo, to)
=0.

Put
: _J ol x, 1) if u(x,)>0,
F(x”)'{o if u(x,t)=0
for (x, t)eS;. It follows from (34) that if d >0 and 0 <t < T, then
(35) " |F(x, 0 < Cu(x, 1) for (x, ye[8, o) x[1, T].

Hence F is continuous at the points where u(x, t) = 0 and, consequently, F is
continuous in Sy.

Let (xq, to) €Sy, u(Xg, to) =0 and let 0 < g, < x¢ < 7,. For xe[o, ;]
and k > o, we have e

(36) @ (U (x, to)) = @ (04, to)+ | @(w)s(o, to)da.

. a1
It follows from (34) that |@(u), (0, to) < M' for gelo,, 0,], where the
constant M’ does hot depend on k. Taking k — o0 in (36) we obtain, by the
Lebesgue dominated convergence theorem,

@(u(x, to)) = @(u(a,, to))+ } F(o,to)ds for xe[o,, 0,].

Hence, in view of the continuity of F, the derivative ¢ (u),(xq, to) exists and
@ (U),(xo, to) = F(xo, to). Inequality (33) follows now from (35).

4. Two comparison theorems. The following theorem holds:

THEOREM 4. Let assumptions (I} (IIl) of Section 1 be satisfied. Moreover,
assume that u, is piecewise continuous and u,(t) = ¢ > 0 for te(0, T] and for
some constant c. Let u be the weak solution of problem (1}-(3). If 0 <c¢' <c¢
and i, is the weak solution of problem (1}«3) defined by (8), then

i, (x,t)<u(x,t) for (x,t)eSr.

Proof. The result follows immediately from Theorem 1, Theorem 2 and
Lemma 2.
Assume additionally that

(IV) @(uo), @ (u,y) are Lipschitz continuous, uy(0+) = u,; (0+),
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and

(V) uo(x) > 0 for x < x, and uy(x) = 0 for x > x, and for some x, > 0.

Let u be the weak solution of problem (1)}3). In view of Theorem 22 of
[11] we have £(t) = sup {x€(0, ©): u(x, t) >0} < co for all re(0, T]. As a
consequence of Theorem 4 we obtain the following result:

THEOREM 5. Let assumptions (I}{I11) of Section 1 and (IV){V) of Section
4 be fulfilled, let uy(t) = c > 0 for te(0, T] and for some constant c, and let u
be the weak solution of problem (1}43). Then there exists a positive constant
A = A(c) such that

A2 < E(@)  for te(0, T).

Proof. Let 0 < ¢’ < c and et 7, be the weak solution of problem (1)<3)
defined by (8). It follows from Theorem 4 that @ <u in S;. From the
definition of #,. we have

i, (x,)>0 if x <at'? and te(0, T],
Uy (x,2)=0 if x> at'? and te(0, T]
for some positive constant a = a(c’). Hence
a(c) 2 <&
for te(0, T} and 0 < ¢’ <, and therefore

Al < E()

for te(0, T], where A(c)= sup al(c).

0<¢' <e

Added in proof.

Remark 2. Let C,  denotes the set of discontinuity points of u,. It
follows from the construction given in Section 3 that Theorem 2 remains true
if we assume the following condition:

Cyp=C,, and measC(C, =0

instead of “uy is a piecewise continuous function”.
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