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for non-linear parabolic differential equations

by P. Bresata (Gdansk)
Franciszek Leja in memoriam

Abstract. An explicit finite difference scheme is used to approximate the solution ol the
initial value problem for non-linear second order parabolic equations in several independent
variables. The approximated solution is allowed to belong to a “natural” class of fast increasing
functions. An error estimate implying the convergence of the difference scheme is obtained.

1. Introduction. The problem of finite difference approximation to initial
boundary value problems for parabolic equations in bounded domains has
been investigated by many authors. In [3], [6], [9], [10] this problem is
treated [or non-linear equations in several independent variables, in bounded
parallelepipeds. Numerical treatment of the Cauchy problem for parabolic
equations i1s found in papers [1], [4], [5], [12], [13]. Among them only
paper [1] is concerned with many independent variables. In [1], [4] the
approximated solutions are assumed to be bounded. Further, in papers [5],
[12], [13] the Cauchy problem for second order parabolic equations (just as
in the carlier paper [8] the Cauchy problem for first order hyperbolic
equations) is treated with the “longitudinal”™ method of lines which reduces
this problem to the corresponding problem for a countable system of
ordinary differential equations. However, only in [12] the approximated
solution may grow as fast as in our case. On the other hand, paper [12]
deals only with the case of one idependent spatial variable and its non-
uniform discretization.

Considering the line method approximation to be the limit case of the
finite difference scheme as the difference quotient for the time variable tends
to the derivative, we see that the linc method cannot be applied under our
circumstances because of the assumption about the relation between the sizes
of the steps for the time and space variables (k/h* = d > 0 in (8)).

We approximate the solution of the Cauchy problem for parabolic
equations by the solution of a suitable discrete problem, using a uniform
explicit difference scheme, and prove a theorem concerning the error estimate
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and the convergence of the scheme. We find, first of all, that the
approximated solution is allowed to grow like exp(K |x|?). This contains
extensions of some the results of [1], [4] to the unbounded solutions case.
Moreover, we consider non-linear equations, obtaining generalizations of the
results of [3], [6], [9], [10] to the Cauchy problem.

Parabolic equations containing the mixed derivatives of the unknowns
have been dealt with by A. Fitzke [3] and M. Malec [9], [10] under different
assumptions on the function f occurring in the given equation. M. Malec
used seven-point approximations to the mixed derivatives which enabled him
to make a relatively weak assumptions on f — implying parabolicity.

In this paper we use the same approximations to the derivatives and
make the same assumption of f concerning parabolicity as those introduced
by M. Malec.

Let us finally mention that not long ago Z. Kowalski [7] proved the
convergence of a difference scheme for non-linear elliptic equations under a
more general, “almost usual” condition of ellipticity.

2. Let x =(xg, X;,...,X)eR"" " and S = {xeR"™"': 0<xo < T, T>0).
Consider the Cauchy problem

(1 Uy, =f(x, u, ug, u,,) for xeS; u(x)=g(x) for xo=0,
where u, = (u, ..., Uy ), Uxx = (“x,-xj hi=1-
We make the following assumptions:

I. Problem (1) has a solution wu(x) which is of class C?(S), has
continuous third order derivatives with respect to variables x; (i = 1,...,n) in
S and satisfies the growth conditions

n
(2) {ul, egeols Maxse] < H(x; M, K):=M 3 exp(Kx])
v=1
for all i,j,s=1,...,n and for some constants M, K > 0.

II. Function f(x, u, g, r) is continuous for (x, u, g, r)e S xR'*"*"" and
of class C! in u, q, r. For any fixed pair of indices i, j (i # j) the derivative
dffdr;; is always non-negative or always non-positive and dff/or;; = of/rj;.
Further, there exist constants L,, L, >0, L, > x > 0 such that

2

3) |0f/ou| < Lo,  |dffdqil < Ly, |fforil < L,,
) Hora— Y |affory > x.

J=1,j#i
Furthermore

(5) |f(x,0,0,0)] < H(x; M, K).
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III. There exist constants 4 >0, N > K and pe(0, 1) so that
(6) A= 4L, max {n, Np~'exp[(N/2)e’" +AT])}.

Assumption III 1s a natural restriction on K or T. It is well known that
in general a solution of (1) belonging to the class of “fast increasing”
functions exists only for small x,’s. We give two examples in which (6) is
satisfied:

1° Arbitrary T >0, 4 > 4nL, and pe(0, 1) while K is so small that
Kp~ 'exp[(K/2)e*T+AT] < n.
2° Arbitrary K, N > K, pe(0, 1) and
/> 4L, max |n, Np“exp(Ne/'2+l)} whereas T < 1/A.

Let A be the set of vectors (multi-indices) a = (aq, %,,...,2,) such that
2% =0,1,....,01;2,=0, +1, +2,... (1 <i<n) I being a positive integer. Let
A =An(x, <. In § we introduce the set S’ of nodal points

[ 4
_(xO’xl 1"-9xn")a aEA,
where

x=a0k (k=T/) and x'=ah (h=const>0;i=1,...,n).
Further we define
i(a) =(agy.--n iy, 0+ 1, d;pyy...50), 0<i<n
(xg <! if i =0) and
—i(@) =(dg,--r%i_q,0;—=1,044,...,0,), 1<i<n.
For a function v* defined for ae 4 we define the difference operators
20 = (%@ — 0k, vV = ('@ —p~i@)/2p,

aij _ S(l .’)
v

TR (V@ 4 p~ 3@ 4 i@ | =@ _ Dy pil= sti.ia) _ = itstiDitay
(i,j=1,...,n), where s(i, i) =1 and, for i # j,

1 if dffor; <0
-1 if dffor; = 0.

>

s(i, j) =
Thus, in particuTaTr,
au — h2 (vt(a) — %+ v—i(a)).

For a function w defined on S we denote w®: = w(x“. One can show that
if we C2(S) then w*/ — Wi, as h— 0. Finally, let

val — (_U“, s van), valJ = (vaij)i'..j=l )
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We consider the following explicit difference scheme corresponding to
problem (1):
O = e e ey for ae A

(7)

¢ =g for 2y = 0.
Our main result is the following
Tueorem. Ler Assumptions 1, 11 and 111 be satistied. Suppose
(8) h<hy, d<k/h?®<1/2nL,,

where d = 2/4 and 0 < hy < 2%/L, if L, > 0 whereas hy may be any positive
number if L, = 0. Then
9 u' =l <z for ae A,
where u* and v* are the values at the nodal points of the solutions of problems
(1) and (7) respectively, and

= Mw'd', o = ulk, h[exp(Loagk)—1]/L,,

HU\’, h) = k/2+["Ll ’12/6+5n7- L‘Z h/3] CXp(Kohz)., Ko _ NK/(N— K).
=) ol o= CXP:NBMOk x? h? +yag k),
i=1

y=max I A '"(1—-p) *Nexp[2Ne*" (1 +hd)+AT],
2L, [exp(h§ Ne*")—13/ph§,(AN/2)e*T}.

3. In this section we preserve all the assumptions of the theorem and
prove several lemmas.

Lemma |. We have

(10) lu*—vY < 2MD™ ¥ exp(Ke* a2 h?)  for ae A.
=1

v

where

(11) D= Dgexp {(K/2)e*"), Dy =142n+hoL,/2Ly+ h3(Lo+1)/2nL,.

Prool. We first show by induction that

n

(12) vl < MDY’ Y exp !K(ja)+ap)? h?), acA.

v=1

If 25 = 0, (12) follows from the growth condition imposed on g. Suppose that
(12) holds for a, = p. Hence we get

(13) Iv““)l, o *iw)l‘ ID" '-sli,j)j(a))l v u‘(su.j)j(u))l
n
< MD§ Y exp{K(la,|+ L+ p)*h?).

v=1
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Taking advantage of (7), (8), (3) and (13), one can easily check that
[0°@] < MDE* 'Y exp (K (la,| + 1 + p)* h?},

e, (12) with oy = p+1. Now, since

Axgk ).aok/(eiuok _ l)

2, .2
(o, +0)* < €™ % + o€
i

and % —1 > iagk > dagdh?, we get from (12)

(14) 117l S MD™ Y exp(Ke'** a2 h?).

v=1
(14) and (2) imply (10).
LeMMAa 2. For ae A we have the estimates

(15) |ug, —u™’l < (k/2)H(x"; M, K),

(16) |ug, —u%| < (W*/6) H(x"; M, N)exp(Kq h?),

(17) |ui,.xj—u""f| < (Sh/3)H(x*: M, Nyexp(Ko h?).
Proof. This is obtained by using Taylor’s formula and (2).
We define

(18) | nalk, h) =f(x% v®, v, ")y —u*®, aeAd.

Lemma 3.
(19) na(k, W)l < p(k, ) H(x*; M, N).

Proof. By (18), (1) and the mean value theorem,
Ina(k, By = [0 — £ s u®l, u?) — [, —f (4 w8, ug, ue )l

of f
a0 ai m 49
S| ux0|+z q. Iu —ux,|+z 0 y g uxixj|°
Applying Lemma 2 and (3), we get (19).

LemMA 4. The function @° satisfies the inequality
(20) A(P%):.=L, Z |%| + L, Z [P —P°< 0 for ac A'.

i,j=1

Proof. It is sufficient to prove that ¢ satisfies the inequality

(21) L, ¢! "|+L, |q)m ao<0 (1<i<n).
Setting C = Ne™*® we get

0f0/p? = — lexp[C (e — 1)a? h: +9k]—1).

Ly
k'
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Hence, by the inequalities ¢* > 1+s and k > dh* we obtain
(22) ©%°/@¢ = yexp(2Ca? h*)+ ACa? h?.
Further, we have
lo%|/0f = h™ ' “**sinh (2C |x,| h?).
Since sinhs <sé* (s = 0), we obtain
(23) L,|of/¢f <2L,C|a|hexp[C(l+a h*+ h?)]
S Ai '(1-p 'Cexp[2C(1+a? h* +hH)]+
+1(1 —p) Ca? h*.
Comparing (23) with (22), we find, by the definition of y,
(24) Lylofi—(1-p)ei® < 0.
Let
Yl = (Lalofl — poi®e], 1<i<n.

It is sufficient to show that ¥ (a;) < 0 because this and (24) yield (21). We
have

_Py

Y(a) = 2:;2‘.ec"2cosh(2Cazh2)— ! lexp[C(e*—1)a?h* +yk]—1].

It is easy to check that /(0) < 0. Since ¢ (—a) = ¥ (a), it suffices to show that
W' (x) <0 for a>0. Making use of the inequalities & > 145, k> dh?
sinhs < se* (s = 0) and s < 5s%/2C+C/2, we derive

Y'(a) = 4L, Csexp(s2/2C + C/2+ Ch?) — Apsexp(s?/2C + ydh?),

where s = 2Cah?. Further, the definitions of 4 and y imply ¥'(a) < 0, g.ed.
LeMMA 5. Function z° satisfies the inequality

(25) A(Z°)+ Loz +1n,(k, )| <0, aeAd.
Proof. It is easy to see that
2% = Mo ®%, = Mw* ", z°°= Mw"® "+ Mw® ¢,
0®@ > w, P°>0, w®=Low*+ulk, h).
These inequalities and Lemmas 3 and 4 imply Lemma 5.
4. Proof of the theorem. We set
w=u"—v", F'=|w|-2z F{=w'-2° Fi=-—-w'—

Let A, = lae A: |af <@, i=1,...,n}. By Lemma 1 there is an integer ¢
such that F* < 0 for ae A\A,. We shall show that F* < 0 for ae 4,. Suppose
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the contrary. Then there would exist a multi-index ae 4,, with a2, > 0, such
that F* >0 and F? <0 for all b= (B, By,.... B)e A, With B, < 2. Take b
so that o(b) = a. It is sufficient to show that F{ <0 and F§ < 0. We have

Ftll — Fll7+kFl;0 — F'{+k(ub°—-v”°—z"°).
Hence, by (18), (7) and the mean value theorem,

+k{|n,,|+|aﬂlw”l+z of "'+IZ OF s z°°}

q; U

{HFMZ 0fF"'+.Z lF""}
+k%|nb|+'aj] +Z f "'+Z a‘if b z"°%.

ij 4

The expression in the last bracket is non-positive. Also |df/oul F® < 0.
Consequently,

b
F§ F,+k{2hz

i of
Y32, lor

LI #))

f(F:(b) l(b))+h2 Z ar (Fl(b) 2F!l! +F1—i(b))+

(_Fu'l(b)_ Fl_i(b)— F{(h)_p;j(b)+

+2 Fl; + Fil( = s(i,j)i(b)) + Fl‘ i(S(i.j)j(b))) } .

Hence, rearranging the terms, we find (cf. [9])

2k 1/0 n ) 10
t<(-p 5 2 e 2 ) e
k& [rfaf & 1o\ 1o
thi [h(a,— a-,-) 204 JF‘

2+ Fll( = s(i,Nib) + Fi’i(S(l'J)j(b))).

of
h IJ(Z#J) (?r

The values F4, FiP, F[i® Fi=s@hion  pris@Di®) are pon-positive. Making
use of (3), (4) and (8), we obtain F{ < 0. The inequality F3 < 0 can be shown
similarly.

Note finally that if L, =0 one can take p =1 and repeat the proof,
which now becomes simpler and the error less. Thus the proof is completed.

Remark 1. Our theorem related to linear equations requires the
assumption that the coefficients at the second order mixed derivatives have a
constant sign. However, it follows from the proof that in the linear case this
assumption is superfluous.

Remark 2. The above result can easily be extended to the Cauchy
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problem for a weakly coupled system of the form

uv.xo =.fv(xa u, uv.x’ uv.xx) il'l Sa v = 1 m
u,(x)=g,(x) for xo = 0, Tl
where u = (uy,...,Up), Uy x = (Uy x5 s Uy x)y Uyxx = (uv.,ixj)f'_J-:l.

Suppose that every [unction f, satisfies Assumption 1I except that the
first inequality in (3) is replaced by |0f,/ou| < L (v,s=1,...,m). Then the
above theorem remains valid for each component u, if we replace L, by mL.
The proof merely undergoes slight obvious changes.
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