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Abstract. A coefficient p,(X) is introduced for every compactum X and every
n=0,1,... In the case where X = P is a polyhedron, z,(P) is the n-dimensional
measure of P (in the usual elementary sense), but for arbitrary compacta, u,(X)
differs — in general — from the n-dimensional measure of X (in the classical sense
of Carathéodory or of Hausdorff). Some properties of u, (X) are established and some
open questions are formulated.

1. Introduction. The concept of the n-dimensional measure of a poly-
tope belongs to the elementary geometry and any essential modification
of it is superfluous. But the situation is-different if one considers more
gencral classes of spaces. The classical concept of the n-dimensional
measure of a metric space X, due to C. Carathéodory [2] or to F. Hausdorff
[3], constitutes an essential tool adequate to the needs of the modern
analysis and geometry. However, some aspects of this concept deviate
from the geometric intuition. For instance, there exist spaces X with
a positive n-dimensional measure which can be transformed, by an arbi-
trarily small deformation onto spaces with vanishing measure.

Using the well-known theorem of P.S. Alexandroff {1] which es-
tablished a clcse connection between arbitrary compacta and polyhedra,
we introduce a coefficient p,(X) which differs in general from the n-di-
mensional measure of X in the classical sense, but which for polyhedra
coincides with the n-dimensional measure and consequently may be
considered as an alternative concept of the n-dimensional measure. We

exhibit some simple properties of this coefficient and we formulate some
open questions.

2. Polyhedra. By E“ wc denote the usual Hilbert space, with points

0
of the form (@, @,, ...), where z; are real numbers with ' 2} < oo and
i=1
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with distance given by the formula

e(z,y) = ]/ (wi—?/f)zy where @ = (@, py ...)y ¥ = (Y1, Y2y +2+) -
i=1

The euclidean n-dimensional space E™ may be considered as a subset
of E”, where we identify every point (z,, #,, ..., z,) € E® with the point
(1) Ty oevy @,,0,0,...)e E”.

If the points ay, a,, ..., @, € E* are linearly independent (i.e. if does
not exist in £“ an (n —1)-dimensional hyperplane H containing all points
Gy @1y -++y @,), then the smallest convex subset of E containing all those
points is said to be an n-dimensional simplex spanned on vertices a,, a,, ...

..y @,. One denotes this simplex by A4(a,, ..., a,). It i8 also convenicnt
to consider the empty set as a ( —1)-dimensional simplex.

If all vertices of an m-dimensional simplex A4’ belong to the sct of
vertices of 4 = A(a,, ..., a,), then A’ is said to be a face of 4. The union
of all faces A’ of A4 with dimensions m < » is said to be the boundary
A of A4, and the set A = AN\ A is said o be the interior of A.

In the elementary geometry one assigns to every n-dimensional
simplex 4 a positive number |4|, called the n-dimensional measure of 4.

A subset P of E” is said to be a polyhedron if it has a triangulation
T, i.e. a system of simplices 4,, 4,, ..., 4, such that

k
(2.1) P-4
im1
and
(2.2) 4;,n4;eT for every two indices ¢, j.

The dimension dimP of P is equal to the greatest of the dimensions

of the silmplices 4; € T. It is clear that the choice of the triangulation
is immaterial.

Let us observe that

(2.3) For every polyhedron P = E“ there is in E® a hyperplane H
containing P.

(2.4) For two triangulations T, and 7, of a polyhedron P, there
exists a triangulation T of P which is a subdivision of both triangulations
T, and T,.

(2.5) If P,,P, c E° are polyhedra, then P,UP, and P,nP, are
polyhedra.

3. n-dimensional measure of a polyhedron. In the elementary geometry
one assigns to every polyhedron P and to every n = 0,1, ... the %-di-
mensional measure of P defined as a number |P|, given as follows:
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(3.1) If AimP < n, then |P|, =0.
(3.2) ¥ dimP > n, then |P}, = . ‘
(3.3) If dimP = n, then one considers all n-dimensional simplices
k
Ay, 4y, ..., 4, of a triangulation T of P and one sets |P|, = > |4,],.
i=1
One sees eagily (using (2.1)) that |P|, does not depend on the choice
of the triangulation T'. Moreover, it is clear that

(3.4) If a polyhedron P, is a subset of another polyhedron P,, then
(1P|, < |P,l, for every m =0,1, ...

One infers by (2.3) and (3.3) that for two polyhedra P,, P, lying
in E® with P,nP, #0O
(3.5) [P\ UP,|, = |P\|,+ Py, — P nPyl,.

In particular,

(3.6) For disjoint polyhedra P, P, c E®, |P,UP,|, = |P,l,+ |P,l,.

Now let us prove the following

(3.7) LEMMA. For every n-dimensional simplex A — E” there is a re-
traction r: E° — A such that for every polyhedron P < E° the set r(P)
is a polyhedron and |r(P)|, < |P|,.

Proof. Assume that n > 0 and that A4 lies in the space E" < E®

consisting of points # = (2, x,,...) € E® such that «; =0 for i > n.
Let us set:

9’((“‘17 af?m eee)) = (%1, @y o0y ,,0,0,...)
for every point (2,, z,, ...) € E”.
Now we select a point ¢ e 4 and we set for every point x € E™"\{c}:
y(x) = point in which the ray ¢z intersects the boundary 4 of 4.

Observe that if A’ is a face of 4 lying on A, then the set p~'(4’)
is a subset of E™ which is the common part of a finite number of half-
spaces of E™ (i.e., of closed subsets of E" bounded by an (» —1)-dimensional
hyperplane). Using (2.4), one easily sees that for every polyhedron P <« E®
there exists a triangulation T such that every simplex of it is either a subset
of 4 or of one of the sets of the form »~'(4’). Since p is linear on the set
yp~1(4"), we infer that every simplex of T lies either in 4 or in one of those
sets p~'(4’). In both cases, its image by v is a simplex.

Setting '

r(z) = yp(x) for every point x € E°,

we get a retraction r: E®* - A. If P <« E® is a polyhedron, then ¢(P)
is a polyhedron lying in E" and 7(P) = yp(P) is a subpolyhedron of 4.
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Since o(p (), (%)) < o(,y) for every =,y € E®, we infer that [p(P)l,
< |P|n‘ '

Let 4,, ..., 4, be all n-dimensional simplices of T lying in 4, and
Ayiyy ooy 4, —1ying in E"\A. Then 9(4d;) = 4; for ¢ =1,...,%k and
p(4;) = 4 for j =k+1,...,1. It follows that

k
(Pl = 199(P)ln = 3 14;ln < 1p(P)ly < |Pl,.

Thus the proof of Lemma (3.7) is finished.

4. Case of compacta X = E”. Recall the well-known thcorem of
P.S. Alexandroff [1]:

(4.1) THEOREM. The dimension dim X of a compactum X < E° is
< n if and only if there exists for every e > 0 a polyhedron P, = E° with
dim P, <n and a map f,: X — P, such that

olz, f(@)<e for every x e X.

Let us assign to every compactum X < E” and to every n =0,1, ...
a number u,(X) defined as follows:

(4.2) u,(X) is the lower bound of the set of all numbers a such that
Jor every ¢ > 0 there is a map f,: X — E® with g(m, fa(w))< & for every
xeX and that the set f,(X) is a subset of a polyhedron P, < E® with
1P, < a.

One can show that if X, ¥ are two isometric compacta lying in E“,
then u,(X) = u,(Y) for every n =0,1,... We omit the proof of this
propcsition, because it is a direct consequence of the known fact that
every isomcfry ¢ of X onto Y can be extended to an isometry ¢ mapping
the whole space E“ onto itself.

One infers by (4.1), (3.1) and (3.2) that

(4.3) If dim X < n, then u,(X) =0.

(4.4) If dim X > n, then u,(X) = oo.

Moreover, let us observe that

(4.5) If X, Y are compacta and if X =« ¥ < E®, then p (X) < u, (¥
Jor every m =0,1, ...

Using (3.6), one gets:

(4.6) If X, Y are disjoint compacta lying in E®, then u,(XUY
= 1 (X) + o (T) for n = 0,1, ...

It is well known that there exists in the interval {0, 1) a 0-dimensional
compact set A with a positive 1-dimensional measure |4|, in the classical
sense. Then the Cartesian n-power A" is a 0-dimensional compactum and
its m-dimensional measure |4"|, is positive, though u,(4") = 0. Con-



Alternative concept of n-dimensional measure 21

sequently the coefficient u, does not coincide with the n-dimensional
measure in the classical sense. ‘

Formulas (4.3) and (4.4) establish a relation between y,(X) and dim X.
Let us add that E. Szpilrajn (= E. Marczewski) [5] established also some
connections between the concept of dimension and the classical concept
of measure. Compare also [3], p. 102.

5. Case of polyhedra. It is well known that for a polyhedron P the
n-dimensional Hausdorff measure is the same as |P|,. In order to show
that so is also for coefficient u,(P), let us observe that

(5.1) U (P) < |P|, for every polyhedron P c— E”.

In fact, this follows by (4.3) and (4.4) if dim P #=». If dim P = n,
observe that the inclusion map j: P — E° satisfies the condition ofz, j(z))
< ¢ for every ¢ > 0, and we infer by (4.2) that u,(P)<|j(P)l, = |P|,.

Now let us prove the following lemma. '

(56.2) LEMMA. For every n-dimensional simplex A <« E®, p, (4) = |4|,.

Proof. One infers by (5.1) that otherwise there would exist a positive
number a such that

(5.3) tn(4) < a< |4l

Consequently, for every £ > 0 there is a polyhedron P, ¢ E® with [P,|, < a
and a map f,: 4 P, with o, f,(z))<e¢ for every point ze 4. By
Lemma (3.7), there exists a retraction r: E* — 4 such that r(P,) is
a polyhedron and that |r(P,)|, < |P.),< a. .

Let 4’ be an n-dimensional simplex lying in the interior 4 of 4. Con-
sider an (n —1)-dimensional cycle y lying in the boundary A of A which
generates the group of Betti Hn_l(zf) . If ¢ is sufficiently small, the map
rf,: 4 — A assigns to the cycle » an (n—1)-dimensional cycle #f,(y)
which is null-homgclogous in 4 and is homologous in AN\ 4’ to y. It follows
that A’ < rf,(4) and we infer by (3.4) that |4’|, < |f.(4)|, . But the simplex

A4’ = A can be selected so that [4’|, > a. Consequently, u,(4) > a, contrary
to (5.3). Thus the proof of Lemma (5.2) is finished.

(5.4) THEOREM. u,(P) = |P|, for every polyhedron P c E°.
Proof. Because of (5.1) we have only to show that

(5.5) tn(P) = [Ply

and we can limit ourselves to the case where dim P = #n.
Let 4,, 44, ..., 4; be all n-dimensional simplices of a triangulation

T of P. Consider in the interior ji of A4; an n-dimensional simplex 4;

K
and let P’ = | J 4;. Then |P’|, < |P],, but for any given number a < [P},

i=1
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one can select the simplices 4; so that 2 |4;], > @. Moreover, since
=l

simplices 4; are disjoint one to another, we infer by (4.5), (4.6) and (5.2)

that
k

nun(P P’) = 2."‘11 2 |A:In > a.

Tam] e

Hence u,(P) > a for every number e < |P|,, and consequently inequality
(5.5) is proved and the proof of Theorem (5.4) is finished.

6. The lengths of arcs I = E®. Let
s: (0,15 > 1L

be a parametric representation of an arc L <« E?, i.e. s is a homeomorphism
mapping the interval 0 < ¢ <1 onto L. The length |L| of L can be defined
as the upper bound of the sums

k
D e(s(t), 8(tpn))y  where 8y =0 <6< ... <8<ty =1.
faml

Let us show that u,(L) = |L|. First let us establish the following

(6.1) LEMMA. For every continuum X < E®, the diameter 6(X) of
X is < py(X).

Proof. Because of (4.2), we can limit ourselves to the case where
dim X = 1. Then there exist two points a, b € X such that

6(X) = e(a, b).

'If f,: X —»E® is a map such that off.(x), )< ¢ for every weX
and that there is a polyhedron P, c E® of dimension <1 such that
f(X) « P,, then there is a polygonal arc K c P, joining both points
f.(a) and f,(b). Then

m(P,) = |P,J, > |E|, > off.(a), f,(b) > e(a, b) —2¢ = §(X)—
Since the positive number ¢ is arbitrarily small, we infer that u,(P) > 4(X)
and the proof of Lemma (6.1) is finished.

(6.2) THEOREM. For every arc L c E® the length |L| = pu(L).

Proof. Let s: {0,1> - L be a parametric representation of L.
It is clear that for every & > 0 the system of numbers

0 =t0<t1< °"<tk<tk-l-l =1

can be selected so that there exists a map f.: L - E®such that ofz, f, (2))
< ¢ for every point x e L and that f,(L) is a subset of a 1-dimensional
polyhedron K, which is the union of all segments s(i;), s(t;,,), Where
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2 =0,1,..., k. It follows that
(6.3) m (L) < |L].
On the cther hard, there exists a pcsitive number # so small that
L<ttn<t,—m<ty, fori=0,1,...,k.

Then s maps the interval {(¢;+4-7,1,,, —7) onto an arc L, = L and I;nL;
= J for ¢ # j. Consider a number a << |L| and observe that if the number
7 is sufficiently small, then

k
Z Q(S(ti‘l"?)a 8(tipa —ﬂ)) > a.
iz

It follows by (4.5), (4.6) and (6.2) that

k
.“1( O Lz 2!‘1 2 o(Ly)

i=1 =0 i=0
k
Z $(t;+ 1), 8(t —n) > a.
=0

Thus u,(L) is greater than every number a < |L|, and we infer that
#1(L) = |L). It follows by (6.3) that u,(L) = |L| and the proof of Theorem
(6.2) is finished.

7. Small deformations of compacta. It is well known that for every
n = 0,1, ... there exist compacta X homeomorphic to the Cantor discon-
tinuum for which the n-dimensional measure (in the classical sense) is

arbitrarily large. Another situation is for the coefficient u, as follows by
the

(7.1) THEOREM. If u,(X) > 0, then for every positive number a << u,(X)
there is a positive number & such that a < p,(f(X )) for every map f: X — E®
satisfying the condition olz,f(x)) <<e for every point xeX.

Proof. Otherwise there would exist a sequence of maps fy,f;, ...
:X — E” satisfying the condition
(7.2) of#, fi(®))<1/k for every ze X and k =1, 2, ...
and that

(7.3) tn(fe(X) <@ for every k =1,2, ...

It follows by (7.3) that for every ¥ =1, 2, ... there is a map
(7.4) @i fo(X) ~ B
such that

(7.5) ey, 9e(y)) < 1/k for every point y ef,(X)
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and a polyhedron P, = E” containing ¢,(X) and satisfying the condition

(7.6) . [Ppl, < a.

It follows by (7.2), (7.4) and (7.5) that the map g, = ¢,f.: X — E“ sat-
isfies the condition

9(97; gk(m)) < Q(w;fk(“’))'i‘ Q(fk(m)7 q’kfk(w)) < 2[k for every ze X

and the set g, (X) lies in the polybedron P, . Since |P;|, < a, we infer that
u, (X) < a, contrary to our hypothesis. Thus the proof of Theorem (7.1)
is finished.

8. Generalization. In the present paper we limit curselves to the
case of compacta X < E° and the definition of g,(X) is based on the
elementary geometric concept of polyhedra. If one replaces polyhedra
by the much more general class of the locally finite polytopes, then one
can transfer the concept of the coefficient yx, from compacta onto more

general classes of spaces. As yet, the so generalized notion of the coefficient
#, Was not studied.

9. Some questions. Alrcady in the domain of compacta, our knowl-

edge of properties of u, is very limited. Let us formulate some questions
concerning compacta X < E“:

(9.1) Is p,(X) < than the n-dimensional measure (X[, in the classical
sense for every compactum X < E®¢

(9.2) Is it true that for every compact ANR-set X < E the value
of u,(X) coincides with the n-dimensional measure |X|, of X?

(9.3) Is it true that m,,,(X x<0,1)) = u,(X) for every compactum
XcE°and n=0,1,...7
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