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A difference method for a system of second order
ordinary differential equations

by Krystyna SzarraNiec (Krakow)

Abstract. The paper concerns a system of second order ordinary differential equations of
elliptic type, together with a two-point boundary condition. This boundary value problem is
approached by a difference one and the proofl of convergence is the our main goal.

Introduction. The present paper concerns a system of nonlinear ordinary
differential equations of second order

L, xy, L x,, x5, x) =0 (te[0,7], a=1,...,p),
together with the two-point boundary condition

0 =a, x@=b, a=1..p

We will approach this system with a system of suitable difference
equations (with two-side differences).

Our goal is to give a proof of convergence of the difference method and
the technique we use is that of difference inequalities. An inequality like ours
(with p = 1) can be found in [1]. It comes from partial differential equations
of elliptic type. In our case the proof becomes simpler and the resulting error
estimate i1s better than that of [1] (cf. the last section).

1. A difference inequality

1.1. Let h be fixed positive number. Let u = (uy, ..., u,, ) €R"*? be a
system of n+2 real numbers which we call a discrete function.
The central two-side differences are defined as follows:

1
(1.1) u!l)zﬂ(ui+l—ui—l)a
@ _ ) ;
(1.2) Ui =h_2(ui+1_‘-'ui+ui-l) (i=1,...,n).
The following simple ob aH ill be crucial for our purposes.
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LemMma 1. Suppose discrete function u attains its maximum for some
different from 0 and n+1, ie.

u Sy, for every i=0,1,...,n+1.
Then
(1.3) ul <0,
(14) 2] < —hu2.

Proof. (1.3) follows immediately from (1.2). Indeed,

1 1
uig = 72 Mg+ 1 — i) 77 (Uig- 1 — ).

Both differences are nonpositive and this establishes (1.3).
By (1.1) and (1.2),

(1.5) 20V + W uf® = 2(u;, ; —u;),
(1.6) 2huV —h2u® = 2(u;—u;_ ) (i=1,...,n).

Condition (1.5) implies

2
2 2
zut(l]) = _hu§0)+_(ui0+1_ui0) S _hu( )

h ‘o’
because
Uig+1 —Uig < 0.
Condition (1.6) implies
(1) (2) 2 (2)
2u,~0 = hio + ;,'(uio_uio_ 1) 2 huio ’
because

Uig+1 —Uig—1 = 0.
Both above inequalities give (1.4).
1.2. We will consider the following difference inequalities
(L.7) aGuP+buV+cu > —¢

(i=1,...,n for ¢ >0, together with the boundary condition

(1.8) o =y, = 0.
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In the sequel we will need the following assumption concerning a, b;
and ¢;:
AssumpTiON A,. There exists constants w, A and 5 such that

(1.9) agz2w>0 ((=1,...,n),
(1.10) il <24 (i=1,...,n),
(1.11) <n<0 (i=1,...,n),
(1.12) w—4ih 2 0.

Now we can prove the basic result concerning our difference inequality.

THeEOREM 1. Suppose Assumption A, holds. Let u = (ugy, ..., u,.,) be a
discrete function satisfying (1.8) and u; | = max i j=0,...,n+1} >0.If the
function u satisfies for i =i, the inequality

(1.13) G UsD + b ul )+ e U = —e,
then

(1.14) uy<p, @(@=0,...,n+1),
where

(1.15) U = —n"te>0.

Proof. Suppose on the contrary that there exists an i such that u; > pu,.
Then also

(1.16) Uiy > My -
We claim that

e
(1.17) ;g Ui+ by uf) < (0—Ah)uiy),
(118) Ciouio < QU .

Indeed (1.17) follows from Lemma 1. More precisely, comparing (1.15),
(1.16) and (1.18) we see that iy # 0 and iy # n+ 1. Thus (1.3) and (1.9) imply

(1.19) a;, uid < oul?).
Moreover, (1.4) and (1.10) imply

(1.20) b uly)| < — Ahull.
Now, (1.19) and (1.20) give (1.17).

Inequality (1.18) follows from (1.11) and (1.16). More precisely, (1.11) and
(1.16) imply

Cig Ui < NU;, -
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Using once again (1.11) and (1.16) we infer that

Mk < Niy .-

The above inequalities together imply (1.18). Summing (1.17) and (1.18) we
obtain
(1.21) Qg UD by Ul + ¢ uy ) <(@—AR)ulD +npy.

The ingredient (w— ih) u}é’ 1s nonpositive, by (1.12) and (1.3) and conse-
quently we can drop it making the right-hand side of (1.21) greater. More-
over, yu,; = —e, by (1.15), we get

(1.22) o WD+ by ul) 4 ¢y < —e.

Since, as we have checked, i, # 0 and i, # n+1, and u;, > 0, inequality
(1.13) contradicts (1.22), and this completes the proof.

2. A system of difference inequalities

21. Now we deal with a system of p discrete functions u,
=AUy s .--s Ugpsq) (@ =1,..., p) and a system of inequalities

4
(2.1) AP +buuld+ ) Copitigy = —¢  (i=1,...,n)
=1
a=1,...,p, € >0, together with the boundary conditions
(2.2) Ugo =Upney =0 (x=1,...,p).

(Note that in (2.1) the difference quotients are taken with respect to i, while
the Greek letters a, f indicate the number of a discrete function.)
Instead of Assumption A; we need the following:

AssumpTioN A,. There are w, 4, n and J such that

(2.3) ay;z2w>0 (=1,...,n,a=1,...,p),

(2.4) byl <24 (i=1,..,n a=1,...,p),

(2.5) Caai SN<0 (i=1,...,na=1,...,p),

(2.6) w—Aih =20,

27) O0<cpu<do (i=1,...,na=1,...,p, f=1,..,p, a#p),
(2.8) n+(p—10 <0.

Notice that, by (2.3), inequality (2.6) holds automatically when h is
sufficiently small — this is important for of the limit procedure.
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Using Theorem | we prove a theorem concerning the above of difference
inequalities.

THEOREM 2. Suppose Assumption A, is satisfied.
Let u, = (g, ...y Upp+1) (@ =1, ..., p) be a system of p discrete function
satisfying (2.2) such that if u,_; >0 for some ay, iy then

200
p
(29 Qg U + by uly + Z CapiUpi = —&, £>0
=1
for a =ay and i =i,.
Then
(2.10) uy<p, (=0,..,n+l,a=1,...,p),
where
(2.11) p,=—(n+(p=138)"'e (u,>0).
Proof. Let i, be such that
(2.12) Ug, = max juy: i=0,...,n+1],
(2.13) Upgio = MAX iUy @ & =1,..., p}.

Notice that (2.2) implies
(2.14) uy, =0 for all a.

Since p, >0 (cf. (2.11) with (2.8)), the only nontrivial case is that of
Uz, > 0. Then, by our assumption,

14
(2) (1
u,0,~0+ba0,-0uao,-o+ Z C,O,,,-Ouﬂio = —E.
B=1

(2.15) agig
Since for f # ag, Cip1, = 0 by (2.7), and, moreover, uy; ;; < Uy, by (2.13), it
follows that

(2.16) Cagpio Upip S CagioYagiq 10T B # ag.

By (2.7), ¢ < J. Since u,_; >0 we get

10Big 10i 0

(2.17) Caop,'o u’O‘O < 5“10,'0 fO[ ﬂ # ag.-
Both inequalities (2.16) and (2.17) imply
(218) C“O’“O uﬂiO < ou

Inequalities (2.18) and (2.5) yield

for B # ag.

agio
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(2) (l)
adolo aolo+baolo :010+ Z caoﬂ‘touﬂlo

p

(2) (l)
azOIO 209i0 + bzolo 19ig + (101010 29ig Z aoioﬂiO ulﬁo

p #10

(2) (l) N
< a:olo "10!0 + b!olo 101'0 + "“101’0 + (p - l) ()"‘Ioio *

Comparing this with (2.15) we obtain

2
(2'19) lololl(a())lo+b10l u(dlo)l +( ( _1)5) GOIO _8'
This is a difference inequality for a single discrete [unction

“10 = (“10.0'ﬂ “ao.l LR ] u10,n+ l)'

Thus we are able to use Theorem 1. Conditions (2.3), (24), (2.6) imply (1.9),
(1.10), (1.12) respectnvely (2.19).

Moreover, since all ¢; are equal to n+(p—1)é and (2.8) is satisfied, so is
(1.11). Theorem 1 gives us the following estimate:

uaolo (”+(p_1)6)

which combined with (2.13) and (2.12) yields (2.10) and completes the proof
of Theorem 2.

Remark 1. Let us point out that for p =1, A, coincides with A, of the
preceding section, and so in that case Theorem 2 is just Theorem 1.

2.2, It is plain that by replacing each u, by —u,. Theorem 2 gives the
following

THEOREM 3. Suppose Assumption A, holds. Let u, = (uy o, ..., Uyp+1),

a=1,....,p be a system of p discrete functions satisfying (2.2) and such that
if uz,i, <0 for some ay, iy, then

(220) Qyi ugug) + bm ual i/ + Z Capi uﬂl =
p=1

for « =a, and i =i,. Then
(2.21) Uy = — i, (=0,...,n+1,a=1,...,p)
(see (2.11) for the definition of u,).

3. Convergence of the difference method

Now we consider a system of p ordinary differential equation of second
order
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(3.1) Lty Xy ooy Xp, Xgy X)) =0 (@=1,...,p)
together with the boundary conditions
(3.2 x,(0) =a, x,0)=b, (@=1,...,p).

We will need the following

AssumptioNn CA,. The functions f,(t, x,..., x,, ¥, 2), te€[0,1],
(X1, -+ Xp, ¥, Z) €ERP* 2, are continuously differentiable in [0, 1] x R”*? and
satisfy the following conditions:

¢
(3.3) —f<n<0 (a=1,...,p),

0X,
0
34) 0 —f, <o B#oa p=1,...,p,a=1,...,p),
. 0xg
0
(3.5) — <24 (a=1,...,p),
Oy
0
(3.6) O<w<—f, @=1,...,p),
0z
(3.7) n+(p—14 <0,

where w, n, 4, 6 are some constants.
We wish to approach a solution of the problem (3.1), (3.2) by a solution
of

(B8) foltis vy v, B 0 =0 (i=1,...,n,a=1,...,p),
(3.9 Upo =Qyy, Ugpey=b, (@=1,...,p),
where t; =ih, i=0,1,...,(n+1), h=t(n+1)" .

We show that solutions of (3.8), (3.9) converge to a solution of (3.1), (3.2)
as h—0.

THeOREM 4. Suppose Assumption CA, holds. Let C? functions x, («
=1, ..., p) be solutions of (3.1) satisfying (3.2). Then discrete functions v,
= (V4,05 ---» Uan+1) (@ =1, ..., p) which are solutions of (3.8), (3.9) satisfy, with
t,=ih, h=t(n+1)"",

(3.10) %, (1) = vl < —e(n+(p— 1)
Jor i=0,...,n+1,a=1,..., p, provided h is small enough, i.e.,

(3.11) O0Sh<wi ™t
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The number ¢ece(h) (defined below, cf. (3.15)) is such that
(3.12) e(h) -0 as h—0.

Proof. Put x, = x,(t;). The discrete functions x, = (x;0, ---, Xgn+1), &
=1, ..., p, satisfy a system

(313) j:z(ti’ Xyis oo pn ‘:u“’ ’((2)) = &ai (h)

fora=1,...,p, i=1,..., n. Continuity of f, as well as of x, and x, implies
that

(3.14) e(h) -0 as h—0,

where

(3.15) e(h) = max ile;(W:a=1,...,p,i=1,...,n.
Set

(3.16) Fai = Xgi—Uy (=0,...,n+1,a=1,...,p).

By the Mean Value Theorem, the functions r, =(r, q, ..., ¥y .+ ) Satisfy
the following system ol difference equations:

A ﬁ

(3.17) y L

S (A =y

(A; denotes here a suitable intermediate point depending on i).
Denote the derivatives involved in (3.17) by c,g, ba, a,; respectively.
System (3.17) takes now the form

p
(3.18) U PP +bg v+ Y CapiFpi = Ea
g=1
Moreover, by (3.2) and (3.9)
(319) ra.0=ra.n+l=0 (azl,---,P)-

Notice that Assumption CA, and (3.11) imply that the coefficients a
and c,q; satisfy A,.
Suppose for some aq, i

(3.20)

ai bai

> 0.

10’0

The discrete functions r, satisfy, by (3.18) and (3.15), the inequality

p

(2) 1

(32[) aao'0r40‘0+b‘10'0r:'0)‘0+ Z Cﬂﬂior"OiO Z ¢
p=1
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Using (3.20) and (3.21) we can apply Theorem 2, getting right away
(3.22) rai <A,

for all indices o and i, where pu, is defined by (2.11).
Suppose now that for some ay, i,

(3.23) ragi, < 0.
(3.18) and (3.15) yield
14
(3.24) ayi r(zzl"'l +bﬂ|"1 r;ll"'l T ,;Z, Caypiy Fpiy SE-
Theorem 3 now gives the estimate
(3.25) ro; =2 —H, for all « and i.

Comparing (3.22) and (3.25) we obtain
(326) ‘rail < Hp = "8('7+(P— 1)6)_17
which is (3.10). This completes the proof.

4. Concluding remarks

As we have mentioned in the introduction, Pli§ and Kowalski [1]
considered the difference inequality of elliptic type

4.1 Y aMuMi+ Y bMuMi+eMuM > —e,
i j
where u™ and u™Y (i,j =1, ..., n) denote the difference quotients of the
partial derivatives du/0x; and &> u/dx; dx; at a suitable nodal point M.
Inequality (4.1) in the case of a function of a single variable is just (1.7).
Plis and Kowalski got the following estimate

4.2) uM < —n~ Y (e+nihA+ E(h)),

where a positive constant A (depending on n) dominates all difference
quotients of second order, E(h) depends on h, A and on how repidly all
second order difference quotients change, the remainder has the same mean-
ing as in this paper. The explicit form of E(h) is too complicated to be
stated here: it depends essentially on the quadratic form ) af & ¢&;.

In [2] we have been able to eliminate, in our context, the term E(h). In
the present paper it turns out that, for h sufficiently small, i.e., satisfying
(1.12), the term nihA 1s needless too, and the right-hand side of (4.2) is as in
(1.15).
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The paper is based on the author’s Ph.D. dissertation [Jagiellonian
University, 19757].
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