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On Bergman operators of exponential type
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To the memory of our colleague and dear friend Stefan Bergman

Abstract. Bergman integral operators for representing solutions of lizear partial differential
equations provide a way of applying function theoretic methods and results to the study of
various general properties of those solutions. The rute of success ol this approach depends on

the choice and construction ol suitable kernels. The present paper is concerned with this basic
problem.

We first consider transformations for simplifying the diflerential equation for the kernel.
Then we give a simplified proof of the criterion for kernels of class E (defined in Section 4)
whose exponents are polynomials of even degree in the variable of integration. This also
entails a characterization of minimal kernels and a representation of these kernels in terms
of finitely many Bessel functions. Finally, it is shown that solutions obtained by operators of

class E with a minimal kernel satisfy ordinary linear differential equations of second order.
whose coefficients are given explicitly.

1. Introduction. Bergman operators are linear integral operators which
transform analytic functions into solutions of linear partial differential equa-
tions. They serve as a translation principle for applying methods and results
of complex analysis to general linear partial differential equations. For instance,
there are various theorems which characterize general properties of analytic
functions related to the domain of holomorphy, type and location of singu-
larities, behavior near singularities, growth in general and distribution of
values, and the coefficient problem for various representations. From these
theorems one can obtain results on solutions of given partial differential
equations by means of Bergman or other integral operators.

Bergman operators were also suggested by boundary value problems in
compressible fluid flow (cf. [9], [11], [12]). A comparison of Bergman’s
classic [1] with more recent publications, such as [5] or [10], shows that
during the past two decades this function theoretic approach to partial
differential equations has become a large field of its own, and various types
of integral operators have been introduced and applied to practical problems.
Since the method provides easy access to large classes of solutions and their
general properties, it seems very suitable in connection with the so-called
indirect method, or inverse method, in which one disregards boundary condi-
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tions but obtains classes of solutions satisfying certain additional conditions
imposed by geometrical, physical or other properties of a field. Cf. P. F. Ne-
ményi [13], where applications of the method to flow and elasticity problems
are discussed.

The success of the integral operator method depends to a large extent
on the simplicity of the operators used. It follows that, from a practical
point of view, the determination and investigation of suitable kernels for
those operators is a basic problem of the whole theory. The present paper
is devoted to this problem in thc case of second-order equations in two
independent variables and, in particular, to operators with kernels such that
one obtains global solutions. Note that, in general, Bergman’s method of
determining kernels is a method of undetermined coefficient functions in
which one depends on convergence proofs modeled -after Cauchy’s classical
work.

2. Concepts and notations. We consider equations of the form
21 Ay +a(x, NP, +Bx, )b, +y(x, )y =0

whose coefficients are real-analytic functions of the real variables x, y on
some domain % < R?’. We now assume x, y to be independent complex
variables. Then we may continue those coefficients analytically into the
complex domain. To simplify the resulting equation, we set z = x+iy,
z* = x—iy. Note that z* = Z (the conjugate) if and only if x and y are
real. Furthermore, we may eliminate one of the two first partial derivatives
in the usual fashion, say, the derivative with respect to z. Then we obtain
the equation ’

(2.2) Lu = u_+b(z, 2% uy+c(z, z2%)u = 0.

Analyticity of «, 8, y implies that of b and c. More specifically, we assume
that b, ce C®(2), where Q = 2, xQ,, 0 Q,, and 2, is the domain in the
z*-plane which corresponds to 2, under the above transformation. Further-
more, we exclude the trivial case ¢ = 0, in which (2.2) reduces to an ordinary
differential equation for wu,.

A Bergman operator T for (2.2) is a linear integral operator defined on
the complex vector space V(Q,) of all functions fe C“(£2,) and

(2.3) T: V() > Sa(L),

where S, (L) is the complex vector space of all C“-solutions of (2.2) on Q.
A theory of these and similar operators has been developed by S. Bergman
[1], I. N. Vekua [14] and others, the main purpose being that mentioned
in the Introduction. A Bergman operator T for (2.2) can be defined by
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1
(2.4) (Tf) (2,24 = [ g2 0 (kz(1-r) (1) dr.

From now on, the term Bergman operator for (2.2) will be used exclusively
for T as defined by (2.3), (24). We assume ¢ to be real, without loss of
generality. g is called the kernel or generating function of T. We call g
briefly a Bergman kernel for (2.2). Conditions for g to be a Bergman
kernel are obtained by substituting u = Tf given by (24) into (2.2). This
yields (cf. S. Bergman [1])

THEOREM 21 In (2.2) let b, ce C¥(Q), where Q = Q, xQ, and
Q, = {z]lzl < ¢}, @ ={z*||I* <o}, o> 0 fixed
Furthermore, let g be a solution of
(2.5) Mg = (1—t¥)g,.,—t 1g,.+2ztLg = 0
on Qx1I, where I = (—1,1), such that
(26) (1-tHY2g,. -0 ast—- +1 (uniformlyon @), g./tze CO(Qx]).
Then
TfeSo(L) (feC”(&y).

3. Transformations of (2.5) and kernels. In this section we discuss some
transformations of equation (2.5) for Bergman kernels, starting with a mo-
tivation as follows.

The applicability of Bergman operators depends largely on the determina-
tion of simple kernels. This task still involves many open problems, despite
of the general framework provided by Bergman’s theory and the fact that
a number of equations (2.2) have been treated successfully in that respect.
We call g a Bergman kernel of finite form if g is a sum of finitely many
terms, as opposed to an infinite series obtained by Bergman’s method of
solving (2.5). It turns out that useful classes of kernels can be derived by
assuming functions g of a specific finite form involving finitely many
unspecified coefficient functions. The latter have to be determined recursively
from a system of second-order non-linear partial differential equations
obtained by substituting g into (2.5). Since g is of finite form, such
a kernel — if it exists — will be particularly useful for constructing
solutions in the large.

It is clear that the assumption of a specific form of ¢ imposes conditions
on the form of the coefficients b and ¢ in (2.2). Hence in each case it is
essential to show that the class of equations (2.2) admitting operators with
kernels of that form is sufficiently large and includes equations of practical
interest. Furthermore, the explicit determination of those coeflicient functions
in g will be complicated in many cases. However, it may be possible to
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facilitate this task by first transforming (2.5) before substituting g. We list
briefly some transformations which entail simplifications of (2.5).
We can eliminate the first term in (2.5) by using

(3.1a) T =z(1-1%)
as a new independent variable, instead of t. Then (2.5) becomes simply
(3.1b) g-+2(1—z)Lg = 0.

A change of that first term and the factor of Lg can be effected by
introducing t = zt* instead of t. Then

(3.2) gr:—(21)"'g.+Lg = 0.

Slightly more flexibility is gained by setting t = az’ 1.
The second term in (2.5) can be changed by setting

g = (=375,
Then (2.5) implies
(1=t G+ (kt—t ") g, +22tLG = 0.
Similarly, setting
g = zkll(zllz r)‘“g
leads to
(3.3) (1=t Gy, +(kt +1t71)G,e +22tLG = 0

so that one can eliminate that second term, or get rid of t7!, etc.
Another transformation of the independent variable is ¢t = sin 0 and yields

(g cot B)p+2zLg = 0.

Those transformations concerned an independent variable or the dependent
variable g. As a third type, we may combine those two types of transform-
ation. An example of practical interest is

T =zY2t, g=1§.
From (2.5) we then obtain
(34) éf,+2'cL§ = 0.

From a given Bergman kernel for a certain equation we may obtain
infinitely many other kernels by !

THEOREM 3.1. Let g be a Bergman kernel for a given equation (2.2).
Let g, = hg, where h is a function of

(3.9) T =z(1-1%))2
such that (2.6) with g replaced by g, holds. Then Mg, = 0.
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The prbof follows by substitution. An obvious application is the simpli-
fication of given kernels, including the derivation of minimal kernels (kernels
of lowest possible degree in the variable of integration).

4. Criterion for operators of exponential type. By definition, operators of
exponential type are Bergman operators T defined by (24) with a kernel
of the form

(4.1) g=-2¢, qzz%0)= ), q,(z 25"
o
“:

These operators were introduced in [7]. It was shown in [8] that for
f(z) = 2", ne N, these operators T yield solutions u = Tf which also satisfy
linear ordinary differential equations (of order not exceeding m+ 1, independ-
ent of n), so that, as an important consequence of this, the Fuchs-Frobenius
theory becomes applicable to such classes of solutions. Earlier attempts
(9 in (4.1) consisting of one or two terms only) are mentioned in [7].
Later work by K. Ecker and H. Florian [2] based upon [7] and operators
of Bergman—Whittaker type concerns extensions to certain equations in n
independent variables. Cf. also [4].

We say that L is of class E, writen LeE, if L in (2.2) is such that
solutions of (2.2) can be obtained by using an operator of exponential type.
The problem of deriving explicit necessary and sufficient conditions for Le E
was solved in [7] as follows.

THEOREM 4.1. L€ E if and only if the coefficients in (2.2) can be represented
in form (A) or in form (B):
Case (A)
b(z) = —qo(z2)—z"" 4, (2),
c(z,2%) = ~(22)7" 41 (2. %) 41 o (2, %),
with arbitrary analytic q,(z) and

Lem—-1)) (m/2]
q,(z,2%) = 2'?[as 2%+ Y a,2], q.(a)= Y k2.

v=1 v=1
Case (B)
b(Z,Z*) = '*qz)(z)‘—zﬁl‘h(z»z*), C(Z*) = _(22)_1q2,z' (Za Z*),

with arbitrary analytic q,(z) and
[m/2]

g2 (z, 2*) = ky (2% z+ Y k2"
v=2
The other coefficient functions of q in (4.1) are then given by
(—2) L (m—1))

_ . . _ v+l
3.5-..-Qu+l) ; V=1 (v-p+la 2,

q2u+1 (Z) =

u = 1’ 2, ey [%(m—l)]’
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in case (A) and q,,,, = 0 in case (B) and, in both cases,

(_2)# (m/2]
4@ = —5 gy L0 DE=D e ot Dk 2

p=2,3,.. [m2].

5. Class E. Minimal kernel. The proof of the criterion in Section 4 as
given in [7] is rather complicated and long. We show that the use of the
transformation (3.1) yields a much easier access to exponential operators with
an exponent which is an even function of t. We proceed as follows. Substituting
g = ¢ into (3.1b), we obtain

(51) %qz’+(T_z)(qzz*+qzqz°+qu'+C) = 0.
We now assume ¢q in the form
(5.2) gz, z*,7) = ) p.lz, 29"

u=0

Note that this can be converted to the form of g in (4.1) with 2m instead
of m, and conversely. Substitution into (5.1) gives

m 2m
(5.3) 1Y prt+—2[ Y K, ™"+c] =0,
u=0 u=0
where
(5.4) K,=py.»+A,+bp, -, p=0,..2m,
and

u
A, = AZO PizPu-a2» #=0,..,2m,

with the understanding that p; = 0 if j < 0 or j > m. In (5.3) the coefficient
of each occurring power of t must vanish. This yields a system of 2m+1
non-linear second-order partial differential equations for determining p,, ..., P
in terms of b and ¢ as well as possible forms of b and ¢ such that Le E
with g being of even degree in t. Let {u} denote the equation obtained by
equating the coefficient of t* to zero. Equations {m+2},..., {2m} are of
a similar form; indeed, {yu} is

Aoy =124,, p=m+2,.., 2m.

Since A,, = 0 by {2m+1}, we obtain A, = 0, u = m+1,...,2m—1, succes-
sively from {2m},...,{m+2}, in this order. Next, K, =0 from {m+1}.
Equations {2}, ..., {m} are of a similar form; indeed, {u} is

%pu.z"—ZKy-*'Kp—] = 0, H = 2, e, m.
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We show that
(5.5a) Pmz = 0.

Suppose not. Then p,, = 0 from {u+m+1}, p=1,...,m, successively in
descending order, as well as p,.+b = 0 from {m+1} and finally p, » =0
from {m}, a contradiction. This proves (5.5a). Similarly,

(5.5b) Pur =0, pnp=2,...,m—1,

successively in descending order and indirectly by deriving a contradiction
from {u}. From (5.5) and {u+1} we obtain K, =0, u=1,...,m—1.
Equation {0} is '

%Po,z* —z(Ky+¢c) =0

and implies that p,,. # O since otherwise c,= 0, the trivial case which we
excluded (cf. Section 2); this can be seen from (5.3) and (5.4). Hence from
{0} we also have

Ko+c¢ = po /22 # 0.

Equation {1} is

‘%pl.z‘—ZKl +K0+C = 0.

\

By {0}, it entails
P = —2(Ko+c) # 0.

From this and (5.5), using {u+m—1}, we see that p,, =0, u=1,....m,
successively in descending order. We now use K, =0, p,, =0, p;» #0
and {2} to conclude that

(5.6) Po.+b = 0.
From {0} and {1} with K; = 0 and (5.6), writing p, = p(z*), we finally have

b(z,z*) = —po. = @(z)+p(z*) (¢ arbitrary),
c(z*) = 4p'(z*),
so that

(5.7) Polz,2*) = = | @(D)dZ—zp(z*),

0
z*

pi{z¥) = p(z*) = 2 | c(z*)dz*,
2‘0
ps,---» Pm CODStant (arbitrary).

We say that L is of class E if LeE and m in (4.1) is even. In this
section, Le E, as can be seen from (3.1b). Hence we can summarize our
result as follows.
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THEOREM S5.1. LeE if and only if b and ¢ can be represented as shown
in (5.7). The coefficients of (5.2) are then those given in (5.7).

Call g a minimal kernel for (2.2) with Le E if g is the kernel of an
operator of c¢xponential type for (2.2) and there does not exist such an
operator for (2.2) with a kernel of lower degree in t. Then the last line
in (5.7) implies

COROLLARY 5.2. A minimal kernel for LeE is of second degree in t.

6. Equations with b = 0. If b = Q in (2.2), then in Theorem 4.1,
. q2(2) = —z45(2).

Hence in this case, g, cannot depend on z*, so that in case (B) of Theorem
4.1 we would now obtain ¢ = 0, the trivial case which is excluded for reasons
given in Section 2. Taking into account the form of g, in Theorem 4.1 and
using Theorem 5.1, we thus have the simple

THEOREM 6.1. Let b =0 in (2.2). Then LeE if and only if ¢ can be
represented in the form

Bm-1)
(6.1) c(z,2*) = =4[ap(z®+ Y a,27]ay(z%).

v=1
In this case, q, has the form given in Theorem 4.1 and

(_4)ll(ﬂ!)2 Hm-1) v “

‘12u+1(2)=w 2z (Wa, 2", wu=1,..,Hm-1].

Furthermore, in this case all operators of exponential type have kernels of
the form

g = gO ep’
where
I tm—1)]
(6.2) golz, 2%, ) = exp ) qauu,(z, 2%t}
n=0

and p is any polynomial in v = z(1—t%) with constant coefficients.

For example, in the case of the Helmholtz equation

AY+y =0
or

U, o +iu =0

we obtain by a simple calculation

(6.3) gol(z,z*,t) = exp (i /zz* t),

and other kernels for operators of exponential type are as indicated in the
theorem.
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7. A representation theorem involving minimal kernels. There are several
principles for introducing integral operators used in the function theoretic
approach to partial differential equations. These include substitution of an
integral (as in Bergman’s proof of Theorem 2.1), integration of solutions
with respect to a parameter (for examples, see [5]), conversion of a diflerential
operator (inverse of the method in [6]) and the use of integral representations
of special functions. For instance, as an illustration of the last method, the
operator for the Helmholtz equation with kernel (6.3) could be obtained from
the familiar representation (cf. [3], p. 14)

2r

1
J. (z) = o (j, exp i(z sin 6 —n6)do

of the Bessel function of the first kind if one chooses
(7.1 f(z)=2z" (neN).

Indeed, from (2.4) we then obtain
n/2
u(z, z*) = ﬁr(n+%)(%) J,(/zz*),

as was noted in [7]. It is remarkable that the minimal kernel characterized
in Corollary 5.2 also leads to solutions of a more-general class of equations
(2.2) which can be represented in terms of finitely many Bessel functions
as follows.

THEOREM 7.1. Equation (2.2) with coefficients of the form

(7.2) b(z,z*) = ¢(2)+p(z*), c(z¥) = 1p'(¥)

and holomorphic in a neighbourhood of the origin has solutions of the form

(7.3a) u(z, z%) = "= i lgl Vi Ju-2;(—izp(z%)/2),
where S

(7.3b) s(z,z*) = — jz @(DdzZ+3zp(z*),

(7.30) Y = (— DA i"lonz (28,0 () ()

and &, is the Kronecker symbol. u can be obtained from (2.4) with the
minimal kernel

(14) g = eqv q(:"" 2*5 t) = pO(Za Z*)+P(Z*)T = QO(Z)""Iz (Z’ Z*)tz

and f(z) given by (7.1). Here, T = z(1—1?) and p,,(z, z*) = —b(z, z*).
Proof. It follows from Theorem 5.1 that (2.2) with coefficients (7.2)

admits an exponential operator with a kernel of the form (7.4). Substituting
(7.4) and (7.1) into (2.4), we first obtain
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1
_ 2 _
u(z, z¥) = 217" 2" o200 [ 2N (1 2y 12 gy
0

or, setting t = sin 8 and A = iq,/2,

rf2
ll(Z 7*) = 11 ~an eqoiz)+ii(z.z‘) j‘ eiﬁ.cos 26 Coszn 046
. & - .
Q
Using
n »
- n
0s*" 6 = 27" Y (k) cos* 20,
k=0
we thus obtain

(7.5) u(z, z%*) = x(z, z%) Z (k) (A + ih),

where
x(z,2¥) = 47"z2" exp [qo (2)+id(z, z¥)],

WY = | cos (A cos @) cos* Pdd,
(]

h? = | sin (A cos @) cos* PdP,
0

k =0,...,n. Since the integrands are symmetric with respect to m/2, it
follows that

h(zlk)+l = 0’ k = 0» 1,---, [%(n_l)],
WY =0, k=0,1,...,[n2].

For the remaining integrals, using

cos?*p = 2% Z (J (2—0,;) cos (2k—2)) P,
i=

k
osHt1p = 2% Z (Y cos @k—2j+ 1)@

and (cf. [15], p. 21)

2 nf2
Ja(2) = — (= 1)"? [ cos n® cos (z cos P)dP (n even),
n 0
nf2

2
J,(2) = ¥(—1)""”’2 [ cosn®sin(zcos PjdP (n odd),
0

we obtain
k

) = 27*m Z Sl D) 2=8) 212D,
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where k =0, 1,...,[n/2], as well as

k
_ e 2k + L
Wi =274 3 Mz O,
J:

where k = 0,1,...,[(n—1)/2]. Substitution of these expressions into (7.5)
yields (7.3), and the theorem is proved.

We finally consider a relation to ordinary differential equations. It was
mentioned in Section 4 that if Le E, then solutions u = Tf of (2.2) with f
given by (7.1) satisfy a homogeneous linear ordinary differential equation of
order not exceeding m+1 (independent of n) with x = (z+2*)/2 as the
independent variable. Hence for the minimal kernel in Theorem 7.1 this
order cannot exceed three. It is interesting that for this kernel this order
even reduces to two. Indeed, we shall prove the following

THEOREM 7.2. Solutions u = Tf of (2.2) with f(z) = z", neN, and T an

exponential operator whose kernel is minimal satisfy a second-order ordinary
linear differential equation

(7.6) Nyv =v"+a,(x, )0 +ay(x, y)v = 0,

where v(x,y) = u(z,z*), x = (z+2z%)/2, y = (z—2z*)/2i = const, and primes
denote derivatives with respect to x. (The coefficients of this equation are
given explicitly in the proof.)

Proof. Since the minimal kernel in Theorem 7.1 is of second degree

in ¢, the solution u in the present theorem satisfies a third-order equation
of the form

(7.7) Nyv = a3v"+a,v"+a,v"+ayv =0

(with variable coefficients); this was shown in {8]. We prove that we can
choose a; = 0. Under the present assumptions the integrand in (2.4) is

(7.8)  wix,y,0) = Ww(z,z%1) = (%) (1—12"" "2 exp (g0 (2) + 92 (z, 2*)17).
It suffices to show that w satisfies an equation

d 3
(7.9) Nyw = " [(A=D)w ¥ Bi(x, y)e¥]
K=0

with a; = 0 and a, = 1, from which we can then obtain (7.6) by integration
over t from —1 to 1. Since w is even in' t, so is Nyw. Hence f, = f, = 0.
We now substitute (7.8) into (7.9), divide by w and compare the coefficients
of t* k =0, 1, 2, 3. This yields four equations in six unknown functions
Bi, Bs, ag, a,, a,, as. Taking a; = 0 and a, = 1, we obtain f; = 0O from the
last of these equations, whereas the others take the form
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By =ao+a,r+a,(ri+r)), Piry= ayry+2riry4r, .+, =228, = r3,

where ry(z) = qo(z)+n/z,ry = ¢3, 445+, r3 = 2(q,—n—1). From this system
we obtain the formulas

o = —r3/20x+r ry73/2q, +r =1y +ry(ry . +7a2)/rs,
a = —r2r3/2q2—2r1_("2,:+r2.z')/r2

for the coefficients of the differential equation (7.6) as well as a simple
expression for f§,, which ts of no specific interest. This completes the proof.
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