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Continuity in semidynamical systems
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Franciszek Leja in memoriam

Abstract. We investigate the function R, x X 3(¢t, x)— F (¢, x)e 2(X) in the semidynamical
system (X, R,, n), where F(t, x} = { ye X: n(t, y) = x}. We show that under some assumptions
this function is upper semicontinuous. It is also proved that certain semidynamical systems with
negative unicity are, in fact, local dynamical systems and are isomorphic to dynamical systems.

Introduction. In the semidynamical system (X, R,, n) we may consider
F(t, x) — “the past” of a given point x. Since the function n: R, xX - X is
continuous, it is natural to ask whether the functions F: R, x X - 2(X) and
F: R, x2(X)— 2(X) have properties similar to continuity (in the case of a
metric space known as “upper semicontinuity”). In this paper we show that
under some — not too strong — assumptions on the system we can give a
positive answer to this question. Moreover, every system without start points
on a locally compact, paracompact and first countable space is isomorphic to
a system with the required property.

As simple consequences of these theorems we get the following results.
Let us consider a semidynamical system which admits the negative unicity
property (according to [1] and [3] it is said to have negative unicity); then
we can define n(¢, x) for some ¢t <0 in a natural way. Then we show that
every such semidynamical system without start points on a locally compact,
paracompact and first countable space is in fact a local dynamical system and
is isomorphic (as a semidynamical system) to a dynamical system -—
provided a suitable function is continuous.

SECTION 1

1.1. Basic definitions. A semidynamical system on a topological space X
is a triplet (X, R., m), where R, is the set of all non-negative real numbers,
and 7 is a map from R, x X — X satisfying the following conditions: = (0, x)
= x for every xe X, n(t, n(s, x)) = n(t+s, x) for every xe X and ¢, se R,
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and 7 is continuous. Replacing R by R, we get the definition of a dynamical
system. For the definition of a local semidynamical system, which will be
used in one of the theorems, the reader is referred to [17], [3], [5], [6].

Assume that a semidynamical system (X, R,, n) is given. Let A c R,
and M < X. Let us put F(4, M)={yeX: n(t, y)e M for some te A}. If A
= it} and M = {x}, we write F(t, x) instead of F({t}, {x}).

A point xe X is said to be a start point if n(¢, y) # x for any ye X and
t>0.

A function ¢: I > X where I is a non-empty interval in R is called a
solution if n(t, ¢(s)) = ¢(1+5s) whenever tel, t+sel and se R, . If Oc! and
¢ (0) = x, the solution 1s called a solution through x. The solution ¢ is called
a left solution through x if the maximum of the domain of ¢ is equal to 0
(and ¢(0) = x). A solution is called a left maximal if it is a left solution and it
is maximal (with respect to inclusion) relative to the property of being a left
solution. It is known ([1]) that if ¢ is a left maximal solution and the
domain of ¢ is equal to (x, 0] (@ # — o) then there are no cluster points of
o(t) as t—a*,

A semidynamical system is said to have negative unicity if for any
x, ye X and te R, the equality n(t, x) = n(¢t, y) holds only if x = y.

Throughout this paper by a neighbourhood of x (or of the set M) we
mean a set — not necessarily open! — which contains an open set con-
taining x (or M).

Throughout this section we assume as given a semidynamical system
(X, R,, n) on a locally compact and first countable space X, a compact set
McX, xeX and t 2 0.

1.2. ProrosiTiON ([1], 4.4). For every neighbourhood U of M there is a
neighbourhood V of M and s > 0 such that F([O0, s], V) < U.

1.3. Lemma ([4], 3.3). For every a, be R, (a < b) the sets F([a, b], M)
and F(b, M) are closed.

1.4. LEmMA ([4], 3.4). There exists an a > O such that F ([0, t], M) is
compact for every t < a.

1.5. LemMa ([4), 3.5). Let Nc X and 1,J = R,. Then F(I, F(J, N))
=F(I+J, N).

1.6. LEMMA. Let F(t, M) be compact. Then for every neighbourhood U of
F(t, M) there is an s >t such that F([t, s], M) < U.

Proof. By Proposition 1.2 there exists a A>0 such that
F([0, A], F(t, M)) = U. Let us put s = t+4; using Lemma 1.5, we finish the
proof.
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1.7. ExampLE. Let us put X =(Rx {0})u ({0} x(—1, 0]) and define the
function T as follows:
n(s, (z, 0)) = (s+z, 0),

(s, (0 ))_{(O,s-i-y) if s+y<0,
TS = V4,00 if s+y>o0.

(00) (1.0

1 n
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Fig. 1

It is easy to verify that a theorem analogous to Lemma 1.6 with s <t is not
true; let us put M = {(1,0)} and ¢t =2.

The same example shows that the following theorem is not true:

If F(t, x) is compact, then for every neighbourhood U of F(t, x) there
exists a neighbourhood V of x such that F(t, V) c U.

1.8. THEOREM. Let m have no start points. Assume that there exists an
s <t such that F([s, t], M) is compact. Then for every neighbourhood U of
F(t, M) there is an § <t such that F([5, t], M) c U.

Proof. Suppose to the contrary that there exists a sequence {u,} with
u,—t~ and F([u,, t], M) & U. We can find a sequence {s,} (u, <s,<1)
with s, -t~ and F(s,, M) & U, and so we can find nets {x,}, { y,} such that
every x, belongs to M, no y, belongs to U and =n(s,, y,) = x,. Let us take for
every n any g, — left maximal solution such that ¢,(—s,) = y,. Let (a,, 0] be
the domain of o,. From the elementary properties of solutions we have a, <
—t or a, > —s (as = has no start points, o,(f,) has no accumulation point
with 1, - a, and F([s, t], M) is compact). Let us put z, = g,(—t). Thus y,
=0,(—S,) =0,(—t+t—5,) =n(t—s,, 6,(—1t,)) =n(t—s,, z,). But =(t,z,)
=n(s,+t—S,, 2,) = N(Sp, yo) = X,€M and z,eF(t, M), and so we may
assume (by the compactness of F(t, M) — Lemma 1.3) that z, » ze F(t, M).
But t—5,-0; so y,=n(t—s,, z,)—> zeF(t, M) and y,eU for sufficiently
large n, which is impossible.

1.9. LEMMA. Assume that there exists a compact neighbourhood V of M
with F(t, V) compact. Then there is a compact neighbourhood W of M and
s <t such that F([s, t], W) is compact.

Proof. We first show that there exist a 4 >0 and a compact
neighbourhood W of M with #n([0, 1] x W) < V. Indeed, it easily follows
from the compactness of M and the tact that for every ye M there exist a
compact neighbourhood W, of y and 4, > 0 such that n([0, A, ]x W) c V.
Now put s =t—A,
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If zeF([s, t], W), then there exist an ae[s,f] and a ye W with
n(a, z) = y. Let us notice that t —ae[0, t —s] = [0, A). Then n(¢, z) = n(t—a,
n(a, z2)) =n(t—a, y)en([0, \JxW) <V, and so zeF(t, V). By Lemma 1.3,
F([s, t], W) is closed, and so it is compact as a subset of F(t, V).

1.10. Remark. In the sequel we shall assume that there exists a
countable basis #2(M) of M (cf. [2]) and X is first countable. One can ask if
the second assumption implies the first one. The answer is negative; a
counterexample (communicated to the author by Anna Wasko) is the space
of Concentric Circles [7], Example 97 known also as Doubled Alexandroff
Circle (see [2]). The space is locally compact and first countable but, as can
easily be verified, the smaller circle is a compact set and does not have a
countable basis.

However, the following lemma is true:

1.11. LeMMA. A compact set M in a second countable space X has a
countable basis.

Proof. Let 2 be a countable basis of X. Let us introduce a new family
#B; Ye if and only if Yis the finite union of elements of & and M c Y. It
follows immediately that 4 is countable. Now we show that % 1s a basis of

M. Let U be an open neighbourhood of M; then U = U i» where {V;};n is

a subset of 2. For every xe M there is a Vie {V;}icn such that xe V, < U; by
the compactness of M we may find a ﬁmte subcover lV, 7=y of M. Thus

Mc U V < U, which finishes the proof.

j=1

1.12. Remark. Obviously in a metric space every compact set M has a
countable basis.

1.13. THEOREM. Assume that there exist a countable basis #(M) and a
compact neighbourhood W of M with F(t, W) compact and that (X, R, , 7)
has no start points. Then for every neighbourhood U of F(t, M) there exist an
s <t and a neighbourhood V of M such that F([s,t], V) < U.

Proof. By Lemma 1.9 there exist a neighbourhood W of M and an s < ¢
with F([s, t], W) compact. Denote by V, the intersections of the elements of
#(M) with W; we may assume that V,,, = ¥, and V, is compact (for every
neN). Clearly (\{V,: ne N} = M (as every locally compact space is T).

Suppose to the contrary that for every u <t and a neighbourhood ¥V of
M we have F([u, t], V) & U. Then we can find a net {u,}, u, — t~, such that
F([u,, t], V,) & U for every n and thus we infer that for every n there exist
an s,efu,, t], an x,eV, and a y, with y,¢ U and =n(s,,y, = x,. Clearly
s,—t~ and s, > s for sufficiently large n.

As in the proof of Theorem 1.8 we define o, — the left maximal solution
through x, with domain equal to (a,, 0]. As in Theorem 1.8, we have either
a, < —t or a, > —s. Define z, = o,(—1); moreover, 6,(—s,) = y,.
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Thus we get
Yo =0n(=Sp) = Op(—t+1=5,) = n(t~S,, 6,(=1) =n(t—s,, z,)
and
n(t, 2,) = 7(Sp, M(t =S, 2,)) = W(Sp, Vo) = Xp€ ¥, = W.

We may assume that z, - zoe F(t, W) and x, > xoe W, as F(t, W) and
W are compact. Moreover, xoe M as x,eV,, V,., < V, for every integer n
and ) {V,: neN} = M.

So we have:

n(t, zg) — (L, z,) = X, > xoeM and zyeF(t, M).

Since t—s,—0 and z,— z,, we have y, =n(t—s,, z,) = n(0, zo)e F(¢t, M),
and so y,eU for sufficiently large n, which is impossible.

1.14. Remark. Example 1.7 shows that from the compactness of
F(t, M) it does not follow that there exists a neighbourhood W of M with
F ([0, £], W) compact (M = {(1, 0)} and t = 2).

1.15. THEOREM. Assume that there exist a countable basis of M and a
compact neighbourhood W of M with F(t, W) compact (we do not require that
n should have no start points!). Then for every neighbourhood U of F(t, M)
there is a neighbourhood V of M such that F(t, V) < U.

Proof. As in Theorem 1.13 we have {V,] — a family of compact
neighbourhoods of M with V,,, =V, < W and N {V,: neN} = M.

Suppose to the contrary that F(t, V) & U for every n. Thus we may
construct sequences !z,), !x,] such that x,eV,, z,¢ U and =n(t, z,) = x,. By
the compactness of W we may assume that x, — xoe W, as in Theorem 1.13,
xo€ M. Next, z,e F(t, V,), so z,e F(t, W); the last set is compact, and so we
can assume that z, —» zoe F(t, W). Then we have

n(t, zg) «n(t, z,) = X, > Xg€M,
s0 zoe F(t, M) and z,e U for sufficiently large n, which is impossible.

1.16. LEMMA. Assume that there exist a countable basis of M and a
neighbourhood W of M with F(t, W) compact. Then for every neighbourhood
U of M there exist a neighbourhood V of M and an s >t such that
F(t,s], V)< U.

Proof. By Proposition 1.2 it follows that there exist a neighbourhood
W of F(t, M) and a A4 > 0 such that F([0, 1], W) < U. By Theorem 1.15 we
infer that there exists a neighbourhood V of M with F(t, V) < W. Let us put
s=t+A>t Then (by Lemma 1.5) F([t,s], V)=F([0, 4], F(t, V))
c F([0, A], W) = U, which finishes the proof.
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Now we state — as a corollary — the main theorem of this section,
recalling once more all the assumptions.

1.17. THEOREM. Let (X, R, , m) be a semidynamical system without start
points on a locally compact and first countable space; let M be a compact
subset of X which has a countable basis.

Take any t > 0 such that there exists a neighbourhood W of M with
F(t, W) compact.

Then for every neighbourhood U of F(t, M) there exist a 6 >0 and a
neighbourhood V of M such that F([t—6,t+46], V)<= U.

The proof follows immediately from Theorems 1.13 and 1.16.

SECTION 11

Now we state some theorems which show that a semidynamical system
without start points with negative unicity can be considered a dynamical
system.

First we state some definitions and theorems. Throughout this section
we assume as given a semidynamical system (X, R,,m), on a locally
compact, paracompact and first countable space (for instance, any locally
compact metric space fulfils these conditions) without start points. We also
assume as given xe X, t 2 0 and a compact set M c X.

2.1. DeriniTioN. We define the negative escape time N(x) as follows:

N(x) = inf {se(0, 00]: (—s, 0] is the domain of the left maximal solution
through xj.

As one can easily verify, under our assumptions this definition is
equivalent to the definition given by McCann in [4]. Note that it is not
equivalent to the definition given in [1].

Let us put N(M)=inf{N(x): xe M}.

2.2. Lemma ([4], 3.8). N(M) =sup({s: F([0, s], M) is compact}.

23. DeriNmTioN. Let (X, R,,n) and (Y, R,, 0¢) be semidynamical
systems. The system (X, R, , =) is said to be isomorphic to (Y, R, , o) if there
exist a homeomorphism h: X —» Y and a continuous mapping ¢: R, xX
— R, such that:

(1) ¢(0, x) =0 for each xe X,

(i) for each xe X the mapping ¢(-, x): Ry, — R, is a homeomorphism,

(iii) h(r(t, x)) = e(@(t, x), h(x)) for each (¢, x)e R, x X.

24. TueoreM ([4], 4.1). The semidynamical system (X, R.,mn) is
isomorphic to a semidynamical system (X, R., ) which has infinite negative
escape time for each ye X. Moreover, in this isomorphism the homeomorphism
h from the Definition 2.3 is the identity idy (idy: X3y ye X).

2.5. DeriNiTiON. The semidynamical system (X, R, , n) is said to extend
to the dynamical system (X, R, #t) if #i|g, «x = 7.
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2.6. LeMMa ([4], 3.10). The function x+ N(x) is a lower semicontinuous
function, ie, liminf N(y) > N(z) for all ze X.
y—z
2.7. THEOREM ([6], 1.8.7). Let (X, R,, @) be a local semidynamical system
on the metric space X. Then there exists a semidynamical system (X, R, , 0)
which is isomorphic to (X, R,, 0).

2.8. ProOPOSITION. The semidynamical system (X, R, , n) is isomorphic to a
system (X, R,, ®@) with the following property:

if there exists a countable basis % (M). then for every neighbourhood U of
F(t, M) there are a neighbourhood V of M and a 6 > 0 such that F([t-4,
t+6], V)< U.

Proof. It is enough to use Theorem 2.4, Lemma 2.2 and Theorem 1.17.

2.9. ProOPOSITION. Let the system (X, R., n) have an infinite negative
escape time for each ye X. Then for every neighbourhood U of F(t, x) there
are a neighbourhood V of x and a 6 > 0 such that F([t—6, t+d], V) < U.

The proof follows easily from Lemma 2.2, Theorem 1.17 and from the
fact that X is first countable.

2.10. Remark. In the case of a metric space Proposition 2.9 means that
the function F: R, x X — 2(X) is upper semicontinuous, i.e., for every ¢ > 0
there is a 6 >0 such that F(s, y) = B,(F(t, x)) for every seB,(t) and
y€ Bs(x); the symbol B,(p) denotes a ball of radius o centred at p. It is
natural to ask if this function is lower semicontinuous (and thereby
continuous), ie., if for every €¢>0 there is a >0 such that
F(t, x) = B,(F(s, y)) for every se B,(t) and ye B,(x) (see [6]). The answer is
negative, as is shown by the following counterexample.

2.11. ExampLE. Let us put X = R? and function n as follows:

f(s+z,y) if y=0,
(z+s—y,0 if y>0, y—s<0,
(s, (z, y)) =3 (z, y—9) if y>0, y—s=>0,
(z+s+y,0) if y <0, s+y <0,
(z, s+y) if y<0, s+y=>0.

F (1.(0.0)

Fig. 2
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Let us put t=1 and x=(0, 0). As one can easily verify, in every
neighbourhood of (0, 0) there is a point p of the upper half-plane for which
F(t, p) contains only one element (which is an element of the upper half-
plane as well). Nevertheless, the set F(1, x) = {(z, y)e R*: |y|+|z2l =1, 2 <0}
contains the points of the lower half-plane. This implies that the condition
from the definition of lower semicontinuity does not hold.

. 2.12. THEOREM. Let N(x) = + o0 for every xe X and let (X, R, , ©) have
negative unicity. Define i: Rx X — X as follows:

s, ) ifs >0,
s y) = %the unique element of F(—s,y) ifs <O.
Then 7 is a continuous function and (X, R, %) is a dynamical system (i.e., the
semidynamical system (X, R, , m) extends to the dynamical system (X, R, 7)).
Proof. We have to show that for each yeX, s>0 and a
neighbourhood U of n(s, y) (and F (s, y)) there exist a neighbourhood V of x
and a & >0 with n{(s—J,s+8) x V)<= U (and F((s—6, s+6), V)< V).
The continuity of 7 for s > 0 follows immediately by the continuity of =;
for s <0 we obtain it by Theorem 1.17 (the assumptions of this proposition
are fulfilled as X is first countable).
To show the whole theorem notice that the first condition from the
definition of the dynamical system is obvious and the second condition
follows immediately by Lemma 1.5.

2.13. CoRrOLLARY. If the semidynamical system (X, R,, n) has negative
unicity, then it is isomorphic (as a semidynamical system, with h = idy) to the
dynamical system (X, R, 7).

The proof follows easily by Theorem 2.4 and Theorem 2.12.

2.14. CoroLLARY. Let (X, R, , 1) be a semidynamical system with negative
unicity on the metric space X. Then there exists a dynamical system which is
isomorphic (as a semidynamical system) to (X, R,,n) (ie. (X, R,, m) is
isomorphic to a semidynamical system which extends to a dynamical system).

Proof. It is enough to use Theorem 24 and Corollary 2.13.

2.15. LEMMA. Assume that m has negative unicity and F(t,y)# @ for
every yeM (recall that t >0 is fixed). Then N(M)>t and for every
neighbourhood U of F(t, M) there is a 6 >0 such that F([t—0,
t+4d], M) U.

Proof. We first show that N(M) > t. It is enough to show that there
exists an a > 0 with N(y) > t+a (for every ye M). Of course N(y) >t for
every yeM, as F(t,y) # @ and (X, R,, n) has no start points.

Suppose to the contrary that there exists a sequence {x,} < M with
N(x,) <t+1/n. By the compactness of M we may assume that x, — xoe M.
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Thus liminf N(x,) < liminf(¢+1/n) =t, but from Lemma 2.6 liminf N(x,)

= N(xq) >t, which is a contradiction.

To show the second part of the lemma notice that by Lemma 2.2 and
Lemma 1.3 the set F ([0, t], M) is compact (as N(M) > t) and we can use
Lemma 1.6 and Theorem 1.8.

2.16. THEOREM. Let (X, R,, ) have negative unicity. Assume that there
exists a countable basis of M and F(t, y) # @ for every ye M. Then for every
neighbourhood U of F (t, M) there exist a 6 > 0 and a neighbourhood V of M
such that F([t—6,t+6], V)< U.

Proof. By Theorem 1.17 it is enough to show that there exists a
neighbourhood V of M with F([0, t], V) compact. By Lemma 2.2 it is
sufficient to show that N(V) >t.

We shall show that there exist an a > 0 and a neighbourhood V of M
with N(y) = t+a, for each ye V. Suppose to the contrary that there exist a
net {V,} of compact neighbourhoods of M such that V,,, cV,, NV, =M,
and a net {x,} such that x,eV,, N(x,) <t+1/n.

We may assume that x, —» xoe V;, as V] is compact, and that x,e ¥, for
every integer k, as x,e ¥, for each n > k and V, is compact; so xoc M. Thus,
by Lemma 2.6, N(x,) <liminfN(x,) <liminf(¢+1/n) =t, but by the

previous lemma N(xy) > N(M) > ¢, which is a contradiction.

2.17. CoroLLARY. Let (X, R, , n) have negative unicity and F(t, x) # Q.
Then for every neighbourhood U of F (t, x) there exist a neighbourhood V of x
and a 6 >0 such that F([t—6,t+46], V)< U.

The proof follows immediately by Theorem 2.16, as X is first countable.

2.18. CoroLLARY. Let (X, R, , m) have negative unicity. Let us put f (t, x)
as the unique element of F(t, x) — if F(t, x) # Q. Then the function f is
continuous on its domain.

This 1s immediate by Corollary 2.17.

2.19. Remark. As one can easily verify (Corollary 2.17), in the case of a
system with negative unicity on a metric space the function F is lower
semicontinuous (cf. Remark 2.10).

2.20. THEOREM. Let (X, R, , ) have negative unicity; let us define @ as in
Theorem 2.12 (if F (¢, x) # @). Then (X, R, #) is a local dynamical system (7 is
continuous). Moreover, for every ye X, the positive escape time of y (see [1])
w, equals + 0.

Proof. The only difficulty is to show the openness of the domain of 7;
the remaining conditions follow directly as in the proof of Theorem 2.12 (we
use Corollary 2.18). The positive escape time is w, = + o0 since the
semidynamical system is global.

The openness of the domain 7 is equivalent to the lower semicontinuity
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of the function N: X3x—N(x)e R, (cf. [5S], Lemma 1.3.1, Remark 1.3.4),
which is true by Lemma 2.6.

2.21. Remark. In the case where X is a manifold, Theorem 2.20 was

stated by Hajek in [3] (Proposition V1.4.1).
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