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On a system of functional equations occurring
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In the present paper we shall give the general solution (without
any supposition whatever about the required functiond F(X) and g(X))
of the system of functional equations

(1) F(BA)=F(B)F(4),
(2) g(BA) =F(B)g(4)+g(B),

where A, B and F are 2 X 2 matrices (!) and g is a 2 x1 matrix. Moreover,
we assume that equations (1) and (2) are satisfied (and the functions
F(X) and ¢g(X) are defined) only for non-singular matrices A and B.

Equations (1) and (2) occur in the theory of geometric objects
(ef. [2], p. 152).

Equation (1) does not contain the function ¢ and therefore may be
considered independently of equation (2). The general solution of equa-
tion (1) has been given in our paper [4] (cf. also [5]). Namely, a function
F(X), satisfying (for non-singular matrices A and B) equation (1), must
have one of the following four forms:

) F(X)=0"”(OA) 'P?A)“ X0,
a Py = oD 0

(5) F(X)=0C 9’(04) (P(f)zjéd)“()—l,
(6) F(X) =0 :Ejg —;Ej;“o-l_

() In the present paper we use capital Latin letters to denote 2 x 2 matrices
(whick in the sequel will be shortly called matrices), small Latin letters to denote
2 x1 matrices (which will be shortly called vectors), and Greek letters (small as well
a8 capital) to denote scalars. Moreover, the determinants of matrices X, A, B will
be denoted by 4, 44, Ap, respectively.
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In formulae (3)-(6) A4 denotes the determinant of the matrix X, C is an
arbitrary constant non-singular matrix, the functions ¢ (&), (&), @.(&) are
arbitrary solutions of the functional equation

(7) (&n) = p(f)o(n)

(in the sequel such functions will be called multiplicative), with the
restriction

(8) (§) %0,

(but we admit the case ¢,(§) = 0, the case ¢,(§) = 0, or both), a(&) is
an arbitrary function satisfying the equation

(9) a(fn) = a(é)+a(n)
and the condition
(10) a(é) %0,

and the functions x(£) and o(£) are a solution of the system of functional
equations

x(&n) = %(&)x(n)—o(&)a(n) ,

o(§n) = x(§)a(n) +a(&)x(n),

fulfilling the condition
(12) g(£)£0.

Restrictions (8), (10) and (12) are not essential, but it is convenient to
make them. For if any of the inequalities (8), (10), (12) were not fulfilled,
then the corresponding cases of (3), (5), (6) would be reduced to
case (4).

Equations (7), (9) and (11) as well as their solutions are well known
(cf. [1], [5]). However, we shall call the reader’s attention to the following
facts: Every solution of equation (7) is either an even or an odd function
(this can easily be verified if we set in (7) successively: £ = =1, £ =175
= —1, 5 = —1). Furthermore, it follows from (8) that ¢(&) % 0 for £ # 0
and in particular

(13) (1) =1.

(11)

Every solution of equation (9) is an even function and we have
(14) a(l) =a(—1)=0.

Finally, functions »(£) and o(&), satisfying the system of equations (11),
must be either both even or both odd.

From the above-mentioned properties of the solutions of equations
(7), (9) and (11) it follows in particular that, if inequalities (8), (10},
(12) are fulfilled, then they are also valid if we confine ourselves to
&> 0 only.
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Now we shall prove the following
THEOREM. Functions F(X) and ¢(X), satisfying (for non-singular
matrices A and B) equations (1) and (2), must have one of the following forms:

(15) F(X) arbitrary of functions (3)-(6), ¢g(X)=[F(X)— E]e,

a6y wx —cft O e x) — ¢ Bl ‘
0 pn]” I (el 4)—1) |

: X) llln (M)
17) F(X)=E ! ‘
an- o =48 9 = njy(ay]

A )] e _ olinle(D)]+ wax(a)

as)  r -0 “Ple, o(x) = o MIr DTS
In formulae (15)-(18) 4, w are arbitrary constants, C is an arbitrary constant
non-singular matiixz, ¢ 18 an arbitrary constant vector, E = l; (1) is the

unit matriz, A (as usual) denotes the delerminant of the matrix X, ¢(£),
p(&) and (&) are arbitrary multiplicative functions, where ¢(£)==0 and
£) £ 0 (bul p,(E) may vanish identically).

On the other hand, it may easily be verified that each of the pairs of
functions (15)-(18) actually satisfies the system of equations (1) and (2).

Proof. We shall distinguish 4 cases, according to the form of the
function F(X).

I. The function F(X) has forms (3), (6), or (5), in the last case with
the additional restrietion

(19) p(f)s£1 for £>0.

Let Fo(X) denote the corresponding matrix (according to the occurring
case):

o _|e(4) I
. _[x(4)  —a(4),
R L e &
- _ e(4d) e(d)a(d)} i

so that F(X) = CF,(X)C™'. Thus, after setting this last equality into (2),
we get

o 9(BA) = CF(B)C™'g(4)+9¢(B),

(23) C™'g(BA) = F|(B)C 'g(4)+C'g(B).

Now let us write

(24) g X) €79 (X).
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From (23) it follows that the function g,(X) satisfies the equation
(25) 9o(BA) = Fo(B)go(4) + 9o( B) .
Now we shall prove that there exists a number § such that for

Bogug 2’“ the matrix Fy(B,)— E is non-singular, i.e. that

(26) det[FBy)—E] # 0.

If case (20) occurs, then it is sufficient to assume g = —1. Then we have
det B, = 2 =1 and (by (13)) q:(detBo) =1, and consequently Fy(B,) = B,

and FyB,)—F = B,— E = ” . It is a non-singular matrix.

o

(27) det[Fy(B)—E] = (x(£5)—1) + o¥(£?).

\
If (21) is the case, then we have for B =

But it follows from condition (12) that there exists a § = § such that
expression (27) does not equal zero.

£ 0/

0 EU

det[Fo(B)— E] = (p(&)—1),

Finally, in case (22) we have for B = H

which again, according to (19), is not equal to zero for a certain & = g.
Now let B, be a fixed matrix such that (26) holds and let us put

in (25) first B = By, A = X, and then B = X, A = B,. We obtain

(28) Jo(BoX) = Fy(By) go(X) + go(Bo) 5

(29) 9o(XB,) = Fo( X) go(Bo) -+ go( X)

respectively. The matrix B, evidently commutes with every matrix:
ByX = XB,. Thus g¢4(By,X) = go(XB,) and we obtain by (28) and (29)

Fy(By) go( X) + go(By) = Fo(X)go(B,) + go(X) ,

whence

[Fo(B,) — E]go(X) = [Fo(X)— E]go(B,)
and by (26)
(30) go(X) = [Fo( B,) — E]_l LFO(X)—E]go(Bo) .

But the matrices Fy(B,)— E and F (X)—F commute, since
[Fo(Bo) — E1[Fo(X)— E] = Fo( Bo) Fo( X) —Fo(Bo)— Fo( X) + E
= Fo(BoX)'—Fo(X) '—Fo(Bo) +E = FO(XBO) —FD(X) '—Fo(Bo) +E
= Fo(X)F(By) — Fo( X)— Fo(By) + E = [Fo( X) — E][Fo( B,) — E] .
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Consequently the matrices [Fo(B,)— E]~' and [F,(X)— E] also commute.
Thus, putting % - [Fy(B,)—E] 'g{B,), we can write (30) in the form

(31) 9o(X) = [Fo(X)—ETk .
Going back to the functions F(X) and g(X), we have by (31)

9(X) = Ogy(X) = C[CT'F(X)C— Bk = COT'[F(X)— E]Ck
= [F(X)— E]e,

where we have put ¢ 2L k. Thus in this case we have obtained functions (15)
a8 the solution of equations (1) and (2).
II. The function F(X) has form (4) (the possibilities ¢,(&§) =0,
@o(&) = 0, or both, are also admitted).
Writing
@1(4) 0
i) =70l

we have F(X) = CFy(X)C™", and introducing the function g,(X), defined
by (24), we obtain, as in the preceding case, equation (25) for the function

9o(X).

Let g,(X) = ;‘Ei; n . Writing equation (25) in coordinates we
2
obtain for the functions y,(X) the equations
(32) v(BA) = @(4p)y(A)+%n(B), t=1,2.

The general solution of an equation of form (32) has been given in [6]:
X)) = Alp(4)-1) i @6)FEL,
#(X) = In|g(4)| it @6 =1

(p(&) denotes here an arbitrary multiplicative function, not vanishing
identically). Thus there are 4 possible subcases:

1. ¢(£) 5~ 1 and ¢,(&) == 1. Then

ll(‘Pl(A ) —1)
Aa(pa(4)—1)

, and then, as in case I (compare (31)), we obtain func-

9o(X) = = [Fo(X)— E]k,

A
Zg
tions (15) as the solution of equations (1) and (2).

2. ¢i(£) =1, gy(£)5 1. Then

where &k =

In|p(4
i) -] nlp(4) H

| Alp(4)—1)



64 M. Kucharzewski and M. Kuczma

and taking into account (24) we obtain functions (16) as the solution
of equations (1) and (2).
3. ¢1(§) £ 1, @o(£)=1. On account of the relation

0
1% Ol —|?
10 @ 0 ‘FI
where
0 1
(33) J=H1 0"

this case can easily be reduced to the former by a suitable choice of
matrix C.

4. ¢(§) =1 and @,(&) = 1. Then

lnlrp(A)l“
In|y(4)]]

2 X) = |

(@, v — multiplicative functions, not vanishing identically), and
F(X)=F\(X)=E

Thus in this case we obtain functions (17) as the solution of equations (1)
and (2).

It remains to consider the case where the function ¥ (X) has form (5)
and condition (19) is not fulfilled. Since the function ¢ (&) is either even
or odd, we have two possibilities: either ¢(£) =1, or ¢(&) = sgné. We
shall discuss these two cases separately.

III. The function F(X) has the form F(X) = CFy(X)C™", where
1 4
-

Let us introduce the function g,(X) defined by formula (24). This function
satisfies equation (25).

Let go(X) = zgii ” Writing (25) in coordinates we get
(34) r(BA) = y(A) + a(dgp)ys(4) +y(B),
(35) 7o(BA) = y,(A) + 7o(B) .

Equation (34) alone is sufficient to determine the two functions y,(X)
and y,(X). We need not use equation (35).
It follows from (10) that there exists a § such that a(f2) = 0. Writing
alp 0
B2y g
from (34), putting first B = B,, A = X, and next A =By, B =X

P1{X) + a () yo( X) + 71(By) = y1(Bo) + a(4) ya(By) +11(X) , y

we have ByX = XB, for every matrix X. Thus we obtain
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i.e.
a(f?) yo(X) = a(4)ys(By) -
Hence, writing %f’—))- = 2w, we have
(36) 72(X) = 2wa(4)
and
(37) r(BA) = yi(4) +n(B) +2wa(d)a(ds) .
Now let us put
(38) 7ol X) £ yi(X)— waX(4) .
It follows from (37) that the function y,(X) satisfies the equation
(39) yo(BA) = yo(4)+7o(B) .
Putting further
(40) p(X) £ e,
we have according to (39)
(41) , #(BA) = p(4)u(B) .

As has been proved in [3], a function u(X) satisfying (41) must be of
the form p(X) = ¢(4), where ¢(&) is an arbitrary multiplicative function.
It follows from (40) that ¢(£)s£0 and ¢(&) = |@(&)| for all & # 0. Thus
finally we obtain

7o(X) = In|p(4)]
and by (38) and (36)

In|p(4)|+ wa*(4)

.

Consequently, taking into account (24), we obtain functions (18) as the
solution of equations (1) and (2).

IV. The function F(X) has the form F(X) = CFy(X)C"?, where

sgn A (sgnA)a(A)".

mn=|0 iy

Let us introduce the function g,(X) defined by formula (24). This function
satisfies equation (25).

Let go(X) =

::Ei% “ . Writing equation (25) in coordinates we obtain
2

(42) 72(BA) = sgndpy,(A)+sgndpa(dp)ys(4)+n(B),
(43) yo(BA) = sgnApy,(A)+v«B).

It follows from (43) (cf. [6]) that

(44) yo(X) = y(sgnd—-1)

Annales Polonici Mathematici XIV 5
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(y = const). Let us write

(45) 6L 3n) ()
(cf. (33)) and
(46) 7o X)L ya(4)sgnd—d(sgna—1) .

The functions yo(X), v.(X) satisfy equation (42). In fact, we have by (46),
(9) and (44)

yo{ BA) = ya(d4)sgnd sgndp+ ya(dp)sgn A sgndp —6(sgndsgndg—1)
=sgndplya(d4)sgnd4—d(sgnd4—1)]—d(sgndp—1)+
+ya(4p)sgnAp—ya(dg)sgndp +ya(dg)sgnd sgndgp
= sgndpye(A) + yo( B) + ya(4p)sgn Adp(sgnd.4—1)
= sgndpyo(A) + yo(B) +sgn dga(dp)y(4) .
Now let us put
o(X) Ly X) — ol X) -
The function p(X) evidently satisfies the equation
(47) e(BA) =sgndgo(4)+e¢(B)
and, according to (14) and (45), o(J) = 0. From (47) it follows (cf. [6]) that
(48) o(X) =4A(sgn4d4-1).

Setting in (47) X —J, we obtain i — 0. Thus finally o(X) =0, y,(X)
= y(X) and by (46) and (44)

ya(A)sgnA—d(sgnd—1)

9ol X) = y(sgna—1) |

)

which can be written in the form

_ [|sgn4 -1 sgnAa(A)H —4éf B
P70 S sy | o e E SRS 41 %
where we have put k = “ —;6 “ Thus, as in case I (cf. (31)), also in the

present case we obtain functions (15) as the solution of equations (1)
and (2).

Thus we have considered all the possible cases and so the proof of
the theorem has been completed.

(*) Instead of J we might take any other matrix with the determinant equal —1.,
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