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A characteristic property of orthogonal pencils of coaxal
circles from the standpoint of conformal mapping

by Hirosmr HARUKI (Waterloo, Canada)

Abstract. This paper gives a characteristic property of orthogonal penecils of
coaxal circles from the standpoint of conformal mapping in analytic function theory.

I. The following theorem of circle geometry plays an important
role in the present note:

THEOREM A. For orthogonal parabolic or elliptic and hyperbolic pencils
of coaxal circles (see [4], p. 64 and G67T), the four vertices of a curvilinear
rectangle formed by any four members arbitrarily chosen are concyclic.

In Section 2 we shall state.a proof of Theorem A from the standpoint
of conformal mapping in aralytic function theory. Conversely, in Section 3,
we shall prove that the property in Theorem A characterizes the ortho-
gonal pencils of coaxal circles.

The well-known principle of circle-transformation of a linear rational
function (see [2]) says: '

Suppose that f = f(z) (= const) is meromorphic in [¢| << +cc. Then
w = f(2) transforms circles on the z-plane into circles on the w-plane,
including straight lines among circles, if and only if f is a linear rational
function.

The following theorem, which is a generalization of the above prin-
ciple, was proved in [1]:

THEOREM B. Suppose that f = f(z) (= const) is meromorphic in
|2] < +oo. Then w = f(z) transforms straight lines Im (2) = on the z-plane,
where t is a real variable, into circles on the w-plane, including straight lines
among circles, if and only if

f(2) = (az+D))(ez+a) or f(z) = (aexp(ke)+b)/(cexp (k2)+ d),

where a, b, ¢, d are arbitrary complex constants and k is an arbitrary real
or purely imaginary constant with (ad —be)k # 0.

In Section 4 we shall prove Theorem B by using the main theorem
in Section 3.
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2. We shall give a proof of Theorem A. We discuss two cases.

Case 1. Consider orthogonal parabolie pencils of coaxal cireles.

‘We may assume that the two pencils lie on the w-plane. Furthermore,
we may assumne that the limiting point of the two pencils is at the origin
on the w-plane and that the two common radical axes coincide with the
real and imaginary axes on the w-plane. Let C be a curvilinear rectangle
formed by any four members arbitrarily chosen from the two pencils.
Consider the function w = f(#) = 1/z. Then, there exist a non-empty
simply connected domain D and four points 4,, 4,, 4;, 4, on the z-plane
satisfying the following three conditions:

(i) f is regular (and univalent) in D.

(if) The four points 4,, 4,, 44, 4, form the four vertices of a rec-
tangle which is contained entirely in D and whose sides are parallel to the
real and imaginary axes on the z-plane.

(iii) The four points f(4,),f(4.),f(4d]), f(4,) coincide with the
four vertices of the curvilinear rectangle C on the w-plane.

The above facts result from the following mapping property of f(z)
= 1/z: :

The horizontal and vertical lines Im(2) = const and Re(z) = const
on the z-plane are transformed by the function w = f(2) = 1/z into ortho-
gonal parabolic pencils of coaxal circles on the w-plane whose limiting
point is at the origin and whose two common radical axes coincide with
the real and imaginary axes.

By (ii) the four points 4,, 4,, 44, 4, are concyclic. Since f(2) = 1/z
is a linear rational function, by the “if” part of the principle of circle-
transformation the four points f(A4,), f(4.), f(4a), f(4,) are also concyelic.
Hence, by (iii) Theorem A is proved in this case.

Case 2. Consider orthogonal elliptic and hyperbolic pencils of coaxal
circles. 4

‘We may assume that the two pencils lie on the w-plane. Furthermore,
we may assume that the two limiting points of the two pencils are at 1
and —1. Let C be a curvilinear rectangle formed by any four members
arbitrarily chosen from the two pencils. Consider the function w = f(2)
= tanhz. Then, there exist a non-empty simply connected domain D
and four points 4,, 4,, 4, 4; on the z-plane satisfying the following
three conditions:

(1) f is regular and univalent in D.

(ii) The four points 4,, 4,, 4;, 4, form the four vertices of a reec-
tangle which is contained entirely in D and whose sides are parallel to the
real and imaginary axes on the z-plane.

* (iii) The four points f(4,),f(4,.),f(4s),f(4,) coincide with the
four vertices of the curvilinear rectangle C on the w-plane.
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The above facts result from the following mapping property of
f(2) = tanhz:

The horizontal and vertical lines Im(s) = const and Re(z) = const
on the z-plane are transformed by the function % = f(2) = tanhz into
orthogonal elliptic and hyperbolic pencils of coaxal circles on the w-plane
whose two limiting points are at 1 and —1.

The transformation

w = tanhz = (exp(22)—1)/ (exp(22) +1)

ma) be obtained by performing successively in the order given in the follow-
ing transformations '

(1) ¢ = 9%,
(2) 2" = exp(¥'),
(3) w = (" —1))(z" +1).

Under transformations (1) and (2) the four points 4., 4., 4,, A,
arve mapped on the four vertices Ay, 45, 45, 4} of an isosceles trapezoid
on the z”-plane. Hence the four points 47, 45, 4;, 4 are concyelic.
Since by (3) w is « linear rational function of #”, by the “if”’ part of the
principle of circle-transformation the four points f(4,), f(4.), f(4s), F(4s)
are also concyclic. Hence, by (ili) Theorem A is proved in this case.

3. We shall state the main theorem and prove it.

Let f = f(2) be a non-constant meromorphie function of a complex
variable z in |z| < +oo and let D be a non-empty simply connected
domain, where f is regular and univalent. Let 4, 4,4,4,be an arbitrary
rectangle which is contained entirely in D and whose sides are parallel
to the real and imaginary axes on the z-plane. We denote the set of all
domains D satisfying the above conditions by §. The purpose of the pres-
ent note is, as stated in Section 1, to prove the following

TuEOREM. Let D be an arbitrary. domain belonging to S. Suppose that
w = f(z) (& const) is meromorphic in |2| < +oco. Then the four points
FAY), f(As), F(Aa), f(4,) are concyclic on the w-plane, including straight
lines among circles, if and only if

fz) = (az+D)[(ez+ad) or f(z) = (sexp(ke)+D)/(cexp (k) + d),

where a, b, ¢, d are arbitrary complew constants and I is an arbitrary real
or purely imaginary constant with (ad —be)k # 0.
Remarlk. By the following two facts we see that the property in
Theorem A characterizes the orthogonal pencils of coaxal circles.
(i) The horizontal and vertical lines Im(z) = const and Re(z) = const
on the z-plane are transformed by the function w = f(2) = (a2 +-b)/(cz+4d)
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(ad —be +# 0) into orthogonal parabolic pencils of coaxal circlex on the
w-plane, including degenerate cases.

(ii) The horizontal and verticallines Im(2) = const and Re(2) = const
on the z-plane are transformed by the function w = f(2) = (aexp(kz)—l—
+b) /(cexp(kz)—f—d) ((ad—be)k: # 0) into orthogonal elliptic and hyper-
bolic pencils of coaxal circles on the w-plane, including degenerate cases.
Here % is real or purely imaginary.

Proof of the Theorem. By the above remark and by Theorem A
we have only to prove the “only if” part of the theorem.

Let 4,,4,, 44, A, represent the complex numbers @+ texp(igp),
x—texp(—ip), w—texp(ip), x+iexp(—1ip), respectively, z denoting
the center of the rectangle 4,4,4;4, whose sides are parallel to the real
and imaginary axes on the z-plane and t, ¢ being real variables. By hypo-
thesis the four points

@) w, = f(41) = f(o+texp(ip)),
(5) ws = f(4y) = flz—texp(—ip)),
(6) wy = f(4s) = f(w—texplig)),
(7 w, = f(A44) = flw+texp(—ip))

are concyelie, including straight lines among circles. Hence, by a well-
known theorem (see [4], p. 40) of circle geometry we have
iwlwl w, W; 1
|w2w2 Wy We 1
(8) _ _ =0.
Wy Wy Wy Wy 1
Wy Wy W, W, 1
Developing the left-hand side of (8) according to its first column,
we obtain
(9) W, W, 01 (®, 1, @) + 0.0, Cs (2, T, @) + w3 W3 Ca (2, 2, @) +
+w, W, 0,(z, 8, p) = 0,
where O,(»,?, @), C;(x,t, @), Cs(, i, ¢), Cy(2, , p) denote the cofactors
of the elements of its first column, respectively.
Differentiating both sides of (9) six times with respect to ¢, putting
t = 0 in the resulting equality and writing
(10) Pz, p) = ((66/()"6) (w;;05(w, 2, ‘P)))l-o (J=1,2,3,4),
we obtain
(11) Py(m, p)+Ps(a, 9) + Py(2, @) + Py(w, ¢) =0,
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where # is an arbitrary point in D and ¢ is a real variable. Here P, (z, ¢),
P,(2, @), Ps(w, @), Py(z, ) are trigonometric polynomials in ¢ whose
coefficients are funetions of 2 in D.

Let the absolute term, i.e., the term which does not contain ¢, of
each of P,(x, p), Pso(2, ¢), Ps(®, @), Pa(®, @) be a,(x), 6,(x), a3(), ay(x),
respectively.

If we put

(12) Q_,-(-'B,t,(p) =wjmjcj(w,ta¢) (4 =1,2,3,4),

then Dby the definitions of Cy(,1t, @), Cs(z, t, @), Os(x, 1, @), C4(2, , )
and by (4), (5), (6), (7), (12), after a simple computation, we see that

(13) Q@a(xy 8, @) = Qy(w, —1, —0),
(14) Qs(2, 1, 9) = Qu(x, —1, ),
(15) Qs(w, 1, ¢) =Qi(x, t, —9).
By (10), (12) we have
(16) Pi(@, p) = ((0°/08°)Q;(@, ¢, p)mo (3 =1, 2,3, 4).

Differentiating both sides of (13), (14), (15) six times with respect
to ¢, putting ¢ = 0 and using (16), we obtain in turn

(17) P,(z, p) = Py(2, —9¢),
(18) Py, @) = Py(2, p),
(19) . Pz, ¢) = P(w, —¢).

Since a;(z) = (1/(2n))_f1>,(m, p)dp (j =1,2,3,4), by (17), (18), (19)
we see that )

(20) 01 (®) = 63(®) = a3(2) = ay(2).

Since the representation of a trigonometric polynomial is unique,
the absolute term of the left-hand side of (11), i.e., a,(@) 4 ay (@) 4 as(z) +
+ a,(2) must be 0. Hence, by (20) we have in D

(21) a.(z) = 0.

By a direct calculation of a,(x), taking (4), (58), (6), (7) into account,
we have

(22)  ay(®) = 240 (" @F @)f (@2 —f" (@) f @)f (@)} —
—360(f" (@)2f (@) —f" (2)}f" (®)?).
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By (21), (22) we have in D

(23) [ (@) @)f @=L (@2F (@0 = (@)f @)f @)= 3 @) (@)
Since f is regular and univalent in D), we have in D '
(24) f'(@)2f (@)% # 0.

By (23), (24) we have in D

(25)  f @ @ =31 @/F @) = (/" @]F (@ —3(f" @)/ (@))2).
By (25) we infer that ' (o) [f' (x) — 3(f" (@) [f’ (#))? is real in D. Hence,
by a well-known theorem in analytic function theory we have in D

(26) (@) f (@) =3(f" @) [f (@) = K,

where K is a real constant.

By the Identity Theorem, (26) holds at every point @, where f is
regular with f'(x) # 0.

The left-hand side of (26) is the Schwarzian derivative of f. Solving
(26), we have, accordingas X = Oor K < Oor K > 0,f(2) = (az-+b)/(cz+ q)
or f(z) = (aexp(kz)--b)/(cexp(kz)+d) (k is a real constant), or f(z)
= (aexp(kz) +b)/(cexp(kz) +d) (k is a purely imaginary constant), where
a, b, e, d are complex constants with (ad—bde)k # 0. Thus the theorem
is proved.

4. We shall give another proof of Theorem B Dby using the main
theorem in Section 3. ,

By the remark preceding the proof of the theorem in Section 3 we
have only to prove the “only if” part of Theorem B. Let [ be a non-empty
simply connected domain, where f is regular and univalent and let 4,4,
A,4, be an arbitrary rectangle- which is contained entirely in D and
whose sides are parallel to the real and imaginary axes, £ denoting the
centre of the rectangle 4,4,4,4,. We may assume that the two points
A,;, 4, and the two points 4,, 4, are symmetric, respectively, with re-
spect to the straight line L: Im(2) = Im(z) on the z-plane. By hypothesis
f(L) is a circle, including straight lines among cireles. Hence, by the
Reflection Principle of Analytic Functions (see [3]) with respect to circles,
including straight lines among circles, the two points f(4,), f(4,) and
the two points f(4,), f(4s) are symmetric with respect to the circle f(L)
on the w-plane. Hence, by a simple theorem of inversive geometry the
four points f(4,), f(4,), f(4,), f(4,) are concyclicon the w-plane, includ-
ing straight lines among circles. Hence, by the main theorem we have
f(2) = (az+b)/(cz+d) or f(2) = (aexp(kz)+ b)/(cexp(kz}+ d), where a, b,
¢, d are complex constants and k is a real or purely imaginary constant
with (ad —be)k # 0. Thus the theorem is proved.
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