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Abstract. The Gronwall's inequality for differential equations has been generalized
in this paper in order to study thc properties of a class of non-selfadjoint, in general
non-linear, vector hyperbolic differential equations. It has been shown that the
existing Gronwall inequalities for selfadjoint partial differential equations in two
independent variables, are particular cases of our present generalized inequality.
This inequality has been used to prove uniqueness theorems, comparison theorems,
and continuous dependence theorems for non-linear and non-selfadjoint vector dif-
ferential equations. It has many other important applications in stability problems
and numerical solutions of partial differential equations.

1. Introduction. The Gronwall’s inequality in the original form can
be found in [5] and [2]. Owing to its important applications in the study
of differential equations, it has received considerable attention of both
pure and applied mathematicians. Bellman [1] gave a more general form
of the inequality which was extended further by Snow [6], [7] to the
study of selfadjoint partial differential equations and by Ghoshal and
Masood [3] to the investigation of non-selfadjoint cases in two dimensions.
In the present paper, we have presented a generalized n-dimensional
form of the inequality and applied to the study of uniqueness theorems,
comparison theorems and continuous dependence theorems of non-self-
adjoint vector partial differential equations of hyperbolic type.

2. The generalized inequality and particular cases.

THEOREM. If f(z,v), g(x,y) are all continuous n-vector functions
on a domain D, and p(»,y), q(z,y), H(»,y) are symmetric nof-negative
matric functions (matriz with non-negative elements) on D. Let X (x,, Y,)
and X (x,y) be two points in D such that (x—x,) (y —vy,) =0 and let R
be the rectangular region whose diagonal is the line joining the points X,
and X and let V (s, t; @, y) be the n X n matriz function satisfying the matriz
initial value problem

(1) - M(V) =0,
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where M is the adjoint of the operator L given by
(2) L(u) = ugy+au, +du,+cu
and a = —Hq, b = —Hp, ¢ = —H, with the boundary conditions:

(3) Vie,y;@,yy =V(e,y) =V(X) =1,
¢
Viz,t) = ExP(f a(@, Q)dQ)’
(4) ’

V(s,y) = Exp(fb(e, y)de);

I is the identity matric and V(3,t;®,y) = V(s,t) is the malriz general-
ization of Riemann’s function relative to the point X (w,y) associated with
the operator L.

Let G be the connected sub-domain of D which contains X and on
which V> 0. If R < G and f(x, y) satisfies

(5) f@,9)<g(@ y)+p@,y) [ H(s,y)f(s,y)ds+
%

v z Vv
+q(@,y) [ Hw, 0)f@,tdt+ [ [ H(s, 0)f(s,t)dsdt,
Yo

Ty Yo
where the inequality holds component-wise; then f(#,y) also satisfies
(6)

z Y
f@,9) <g@,9)+p(@,9) [ His,y)f(s,9)ds +q(z,9) [ H(, O)f (@, t)dt+
Ty Yo

T ¥V
+f f_VT(s,t;w,y)H(s,t)g(s,t)dsdt.

Ty Yo
Further, if q(x,y) = 0, then
xr v
(1) flo,9)<g@, 9+ [ [ Vs, )H(s,t)g(s, t)dsdt+
' zZo ¥

x ) 8 v
+p(@,y) [Hs, g, 9+ [ [ V76, 0)H(8,)g(6,1)d0dt}
Tp

Ty Yo

x [exp [ B, wpte, pias.
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Also if p(@, y) = 0, then

z Yy
8) fw,y<g@,y+ [ [V, 0H(s,0g(s,t)dsdt +

Ty Yo

z
+q(@, y) fymm,t){g(w, 0+ [ [ V'(s, D) H(s, P)gl(s, D)dedd} x
Y

Iy Yo

x [exp fyH(w,w)q(w,wd'P]-
4

LEMMA 1. Let a(s,t),b(s,t) and H(s,1t) be continuous matric func-
tions. Then the matriz characteristic initial value problem (1) under (3) and (4)
has a unique solution V (s, t; ®, y) for s and t near to X (¢, y) and satisfying
(8—a)-(t—vy) = 0. The solution is continuous, and if a,b, H are mon-
negative, so is V(s,t).

Proof. Now equation (1) together with conditions (3) and (4), is
equivalent to the Volterra integral equation

t 8
(9 Vs, =I+ [a@, )V(e,ndn+ [ b&y)V(E y)aE+
v T

s ¢
+ [ [ HE, nVE n)aa

[since M(V) = V,,—(aV),—(bV), +¢V =10, H = —¢].

The proof of the theorem is based on the successive approximation
argument. Let T represent the transformation
[4

(10) TV = fann+fde£+ fa fHVdEdn,
T z v

)
so that the integral equation (9) can be written as

(11) V=I+TV.

Let us write V,(s,t) = I, and define V,,, =I+4+TV,. When V is
continuous, 7'V is also continuous under the assumptions stated in the
main body of the lemma, and so by induction V, is defined and con-
tinuous for all ‘n’. Let ||| be a matrix norm, As (s —x)-(t—y) > 0,

¢ 8 s
(12) ITVI< [ lall-1VIdg+ [ 1611V IdE+ [ [ I1HI-1V (&, nldsdn
v z z ¥

4 8 s
<[[ talldn+ [ 1plde+ [ [ |HIaEdn| - max |V (&, )l
z T y

v
< a-max ||V (&, 9)l,
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‘where 0 < a < I if ¢ and ¢ are close enough to (#, y). Then

W1 = Vall=I1T(V, =V, _JI<aemax|V,—-V, ,II<...<a" ||V, —V,lmax.

Now V. = Vo+ Y(V,.,—7V,) is the n-th partial sum of a matrix
r=0

series, which is majorized by the following convergent geometric series
(in matrix norm)

max [V, — Vol ) a".
r=0

It is evident that the matrix sequence {V,} converges uniformly -in the
domain, where (12) holds. Each V,, is continuous and so is the limit function
Vs, 1).
Now
I+TV =14+T{limV,} =I+TlimV,
owing to the continuity of the operator T')
=lim(I+TV,) =1lim(V,.,) =7V.

So that V = I+ TV. This implies that V is a solution of (11).
If possible, let W be any other solution; so V—-W = T (V —W). Hence
[V—Wil = |IT(V-W)||< amax[[V—W]|.
Thus -
V=W,
which proves the unigqueness of the solution V.

Now if a, b, H are all positive, then V > 0, implies TV > 0 (since
(s—a@)(t—y)>0). As V, =1I>0, it follows by induction that V, >0
for all n,so that the limit function V(s,t;x,y) > 0.

Proof of the main theorem. Let

w@,y) = [ [Hs,0f(s,t)dsat [sivce u(,y)=u(,yo)=0].

Ty Yo
Then we obtain
Uy = H(z, y)f(z,y) < H(z, y){g9(z, y) +pu, + qu, +u},
L(u) = g+ au,+bu,+ cu < Hy,
where
«=—Hq, b=—-Hp, o¢=—H.

This is a hyperbolic partial differential inequality for ; L is a non-
selfadjoint operator.
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Now for any two functions u, Ve(?, we have
VIL(uw)—uT M(V) = VT [ty + au, +bu, +cu] —uT[V,,—aV,—bV, +
+(e—a,—b,) V].

Here the relations are scalar and hold true for each column of V.
If a, b, ¢ are symmetric matrices, then we can show that the last ex-
pression is

(uTaV—}- yriy ——uT V”) + (VTbu+ prls —uTﬁ) .
2 2 /. v

2 2

A
t

Y

Fig. 1

Taking the region R referred to in the main theorem in the form
of the rectangle [4] of our previous lemma and applying Green’s theorem,
we find (see Fig. 1)

ff [VTL(u)—uTM(V)]dsdt
R

T
- f {(uTaV-[- VT% _ '“TV‘) dt— (VTbu + VT%"‘- _ uT-%)ds}
C=C’1+02+C3+C4
T il r Vi f[T p Us r_er]
— Xt la— | vTe Bo _yr’e
cf[u aV+V 5 U 2]d S u+V 5 U 2 ds
2 3

[thus « is zero on C; and C,; also ds does not vary on C, and dt on Cy; u, = 0
on C,, u, = 0 on C,]

= [T @V =V)+3(VTu)ldt— [[uT(bV—V,)+ §(V7u),]ds.
C, Cy
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(The relations are scalar relations and hold for each column of V.)If V
is the Riemann function with the initial conditions

aV—V, =O on 02,
bV —V, =0 on C,

and
Viz,y) =1 = VI(X)

(which are conditions (3) and (4)) and satisfies the equation M (V) = 0,
then we obtain

[[ VT L(wydsds = V" (2, y)u(@,y) — 147 (@, o) V (2, Yo) — 1 4(20, ¥) V (%5, %0),
s[; that

w(X) =u@,y) = ff’VT(s,t)L(u)dsdt
since o

w@, < [ [ VR, OEG, (s, 1) dsa;

Ty Yo
hence

fl@,y) < g(@,y)+p(,9) f H(s,y)f(s,y)ds +

+q(z, y) fH(m 0f (@, tdt+f fVT(s t)g(s, t)dsds.

Ty Yo

Now, let ¢g(@,y) =0 a,nd suppose

z v
o(@,y) =g(@, 9+ [ [ V7(s,)H(s, t)g(s, t)dsdt
) v
thus ’

f(@,y) < (@, y)+p(,9) fH(s,yﬂs,y

This inequality may be treated as a one-dimensional Gronwall’s in-
equality for any fixed “y” between y, to v.
For a fixed y, let

x

v(@,y) = [ H(s,9)f(s,y)ds;

T

therefore

(@, ¥) =0,
and

v,(8,y) = H(s, 1)f (s, y) < H(s, y){w(s,y)+ (3, ¥)p(s, )}
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[since H(s,y)> 0], so that we have
v.(8,y) —H(s,y)py(s,y) < H(s, y) (s, ¥).
Hence we obtain
i &Pt

v(@,9) < [H(s,y) (s, y)e ds,

so that

z ¥y
fe,y)<gl@, )+ [ [ V7(s,0)H(s,t)g(s,t)dsdt+p(z,y) X

Ty Yo

z s v II H(v)p(8v)dE
x [H(s,y){g(s,9)+ [ [ V*(6,)H(6,)9(8, t)dbat}e’
:l:o

Iy Yo

Similarly, if p(x,y) = 0, we obtain

z v v
fe,<g@,y+ [ [ Vs, )H(s,)g(s, t)dsdt+q(w,y) [ H(z,1t)x

Io Yo Vo

z t { Hz, 0tz 9120
x{g(w,t)+ [ [ V%6, ®)H(s, D)g(s, ®)dsad)e

Ty Yo

COROLLARY 1. Putting p(x,y) =0 = q(x,y) in (5), we oblain

dt.

r v
f@,y)<g(@,y)+ [ [ V7(s,0)H(s,t)g(s, t)dsdt,

Zo Yo
which was obtained by Snow [7). The treatment given in [6] follows from here
as a particular case.
z v
CorROLLARY 2. If f(z,y)<[ [ H(s,t)f(s,t)dsdt and H(s,1)>0

I
and (@ —ay)-(y—yo) > 0, then f(z,y) <.
CoroLLARY 3. If z‘neqz.mlity (5) i8 reversed, then so s inequality (6)
[(7) and (8)].
COROLLARY 4. If q(#,y) =0 and g(z,y) = 0, then (5) reduces to

T T Vv
f, 9)<p@,y) [Hs, 9)f(s,y)ds+ [ [ H(s,t)f(s,t)dsdt;
Zo To Yo
then by (7)

f(@,y) <0.
COROLLARY 5. Similarly, if p(z,y) =0 = g(x,y), (b) reduces to

fo,9)<q@,y) [ H@,vnat+ [ [ H(s,0)f(s,t)dsdt,

T Y



&
230 S. K. Ghoshal, A. Ghoshal, M. A. Masood

then (8) gives
fle,9) <0

Applications. The applications are analogous to those which have
already been considered by the present authors in their treatment for
the case of a single variable.

ExamMPLE 1. Let us discuss the uniqueness of the solution of

the non-linear, non- selfadjoint, vector hyperbolic partial differential
equation

Uy = {a’(my y)u(a}’ g/)}y+a(w, y)¢(m7 Y, u)

with the conditions prescribed on # = z,, and ¥y = y,. Suppose that
a(xz,y), @(z,y,u) are continuous functions of their arguments, a(z, y)
is an n# X » symmetric matrix, ¥ and @ are » x 1 matrices, @ satisfies
a matrix Lipschitz condition, viz.,

|D(z, y, u)—D(z, ¥y, u*)l < K|u_u*|
for any two vectors u and u*, where the absolute values are taken compo-
nentwise.
Let the boundary conditions be such that the given partial differ-

ential equation is equivalent to the vector Volterra integral equation
given by

u(@,y) = g(@, 9+ [a(s,uls,yds+ [ [a(s,)®(s, 1, u)dsdt,
k)

Zg Yo

where g¢(w,y) is a continuous vector function depending on boundary
conditions. Then for any two solutions % and »* of the integral equation
we have

u—u* = fa’(s’y){u(sr y)_u*(s’y)}ds'F

z Y _
‘ —}—f fa,(s,t){di(E,t,u)—di(s,t,u*)}dsdt.

Ty Yo

Now if (x—x,):(y —v,) = 0, we have

lu—u*| < K’ f|a1 K- |u—u |ds+f f|a| K- |lu—u*|dsdt,

To Yo

where K' || K |u —u*| = |a| |u —u"]|.

With the help of the Corollary 4, we obtain |u —u*| < 0, component-
wise, which implies » = u*.

So there is at most one solution of the differential equation.

A}
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ExAMPLE 2. Let us consider the vector characteristic initial value
problem

Ugy — {a(a” y)u(o, y)}u_a(a’y Nu(z,y) = fle,y),

where all the functions involved are continuous, and a(z, y) is a non-
negative matrix, and % (2, y) is prescribed on @ = z,, ¥y = ¥,. This prob-
lem with the given conditions is equivalent to the vector Volterra inte-
gral equation

z z y
u(@,y) = h(z,y)+ [als, y)uls,y)ds+ [ [ a(s, tyu(s,t)dsdt,
Zy ' Zy Yo

where A(®,y) is computed from f(z,y) and the conditions at @ = a,,

Y = Y- o
Let the vectors #(z,y) and u(®,y), satisfy

z z v
(@, 9) <h(@,9)+ [als,9)a@ y)ds+ [ [ als, )@, t)dsat
Zo

Ty Yo
and
z L2 4
Uz, y)=>h(m, )+ [a(s,9)us, gds+ [ [als,0)iu(s,)dsdt.
£ g Yo

Now by (7) and Corollary 3, we find that for any solution vector
to the boundary valued problem we have

a<<u<u.

This is a componentwise comparison theorem for the solution vector.

ExamrLE 3. Continuous dependence test: Let us consider the
following pair of vector boundary value problems:

Uey = {a(2,y) P(®, Y, w)}y+a(o, y)u(@, y)

with
(2, y) = 9(9), (@, %) =h(@), (%) = h(a),
(D(a}, Yoy h(w)) = f(@) (say)
and ) _
U:m = {a(2, ¥)y(c, ¥, U)}y+a(m1 y)U(z, y)
with

U(m, ¥) = G(y), Ulo,y) = H(w), G(%) = H(m),
v(®, ¥, H(w)) = F(a) (say),

3 — Annales Polonici Mathematicl XJCXITLS
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where-all the functions involved are continuous and & satisfies the Lip-
schitz condition, viz.,

D@, Yy u) - D(z, Yy, )| << K ju—7l

and K is the non-negative Lipschitz constant matrix for @ for two vectors «
and %. Here we form equivalent vector integral equations and substract

. z

u—U =(g—@)+(h—H)—[g(¥) —G(¥)]— [ a(s,3)(f—F)ds +
Zy
+ [ a(s,9)[(s, 45 w(s, 9) —v(s, 9, U(s, y))|ds +
Ty
z v .
T f’fa(s,'t)[u(s,t)— U(s, t)]dsds.

Ty Yy .
Adding and substracting @(U) in the integrand and taking abso-
lute values componentwise, we obtain, for (z—z,) (¥ —y,) = 0,

u— U< lg—G|+h—H|+1g(y) —G(yo)| + [ lal-1f—F|ds+
Zo

+ [ lal-1®(w) — B(U)ids+ [ lal+|®(T)—p(T)lds +

Zo To
z VH »
+ [ [ lai-lu— Uldsds.
Ty Yo

Now if |g—-@I<e |h—H[<e, |P(s,t, U)—y(s,t, U)<e, and
|f—F| < &, where ¢ is a non-negative vector, then

.y
v Ul < eq(@,9)+K [ A-|(u—U)lds+ [ [ A-ju—TUldsdt,
£ ' z Y
where

q(»,y) =3+24(¢—a,), KA|lu—U|=AK|u—T)|
and

N , A = {la,l}.
so that by (7), we obtain

. z ¥
|u— U| gs[q(m,y)+ f f Vi(s, t)Aq(s, t)dsdt +
Ty Yo

t
+K [4-fat, 0+ [ 770,040,000, nasa-e T a)
0 Ty Yo

< [M (e, y)]e,
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where M is a continuous matrix function and abviously bounded. If ¢—0,
then #— U in the domain. This means that the solution of the characteristic
initial value problem depends continuously on the initial data.

There are quite a few more useful applications of the main theorem,
but for the sake of brevity they are not presented here.

Note. Similar results hold in the case of the non-selfadjoint linear
hyperbolic vector partial differential equations of the form

Ugy = {b(,y)P(>,y, “)}y+b(w’ Y)D(x, Y, u).

Acknowledgments, We are indebted to the referee for helpful sug-
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