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Abstract. In the present paper all solutions of system of functional equati‘ons
(0.1), (0.2) are given, where #,y are non-singular 2 x 2 real matrices, i.e.,, %,¥ €
GL(2, R), F and g are unknown functions defined for every z, y e GL(2, R). The values

10
of the function F are 3 x 3 real matrices and, moreover, F([ ]) is a non-singular
01

matrix, i.e.,, F is a non-singular solution of the functional equation (0.1) (cf. [3] for
the properties of the solutions of (0.1)). The values of the function g are 3 x1 real
matrices. The dot denotes the matrix multiplications.

We do not make any assumptions concerning the regularity of the functions F
and g. Moreover, we assume that equations (0.1) and (0.2) are satisfied by the func-
tions F and ¢ only for all =, ¥ € GL{2, R).

The system of functional equations (0.1), (0.2) occurs in the theory of geometrio
objeots. Namely, the solutions of this system of functional equations (0.1) and (0.2)
have been applied to determine all purely differential geometric objects of first class
with three components in the two-dimensional space, i.e., according to the termin-
ology of J. Aczél and 8. Golab, objects of type [3, 2, 1] with linear non-homogeneous
transformation rule.

The method used in the present paper (except Section 5) is analogous to that
used by M. Kucharzewski and M. Kuczma in [10]; however, the present problem is
more complicated. -

Equation (0.1) does not contain the function g and therefore it can be considered
independently of equation (0.2). The general non-singular solution of (0.1) for all
z,y € GL(2, R) has been given in [3]. In the present paper all non-singular solutions
F of the functional equation (0.1) are given by formulae (1.1)-(1.9).

The main result of the paper is Theorem 3.1 and Theorem 5.3.

Introduction. In the present paper all solutions of the system of
functional equations

(0.1) F(a-y) =F(x)-Fly), -
(0.2) g(z-y) = F(2)-9(y) +49(2),

are given, where z, y are non-singular 2 x 2 real matrices, i.e.., @,y
€ GL(2, R), and F and g are unknown functions defined on GL(2, R).



26 Z. Karefisaka

The values of the function F are 3 X3 real matrices and, moreover,

10
F(e) (where ¢ = [ ]) is a non-singular matrix, i.e., F is a non-singular
01 '

solution of the functional equation (0.1). The values of the function ¢
are 3 X1 real matrices. The dot “-” denotes multiplication of matrices.

We do not make any assumptions concerning the regularity of the
functions ¥ and g.

The system of functional equations (0.1) and (0.2) occurs in the
theory of geometric objects (cf. [2], p. 152). Namely, the solutions of
this system have been applied to determine all purely differential ge-
ometric objects of first class with three components in a two-dimensional
space, i.e., according to the terminology of J. Aczél and S. Golab, all
objects of type [3,2,1] (cf. [2), p. 15) with linear non-homogeneous trans-
formation rule.

The method used in the present paper (except Section 5) is anal-
ogous to that used by M. Kucharzewski and M. Kuczma in [10]; however,
the present problem is more complicated.

1. All non-singular solutions F' of functional equation (0.1). Equation
(0.1) does not contain the function g and therefore it can be considered
independently of equation (0.2). The general non-singular solution of
functional equation (0.1) for all z, ¥y e GL(2, R) has been given in my
paper {3] (cf. p. 4-6).

Namely, all non-singular solutions F of the functional equation (0.1)
for every @, y € GL (2, R) are given by the formula

(1.1) F(z) = C-Fy(v)-C7},

where Fy(z) has one of the following forms:

p(4) 0 0 Ly %, 0
(1.2) Foz) =10 p(4) 0 | @y @5 0],
0 0 @s(4) 0 0 1
#1(4) 0 0
(1.3) Folo) =]0  @s(4) 0 ’
o o ¢a(4)
¢(4) ¢(d)e(d) 0
(1.4) Fo(@) =10  ¢(4) 0 ’

0 0 #(4)
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x(4) —a(4) 0
(1.5) Fy(xz) = |o(d4) »(4) 0 y
0 0 g4
1 0 a,(4)
(1.6) Fo(z) = p(4)|0 1 ay(4)],
001

1 a,(4) ay(4)

(1.7) Fo@) =p(hH]o1 o |,
00 1
1 a,(4) :}af(AH—a,(A)
(1.8) Fo(z) = 9(4)|0 1 a,(4) )
00 1
a}, 2211 %13 1y
(1.9) Fo(2) = ¢(A) | 011291 211823+ T12T21 T12%ag |-
T3y 224, @gq T3

In formulae (1.2)-(1.9):

Ty, X
a:=[ " “]eGL(z,R),

T3y Dag

A = detz is the determinant of z; C is an arbitrary constant non-singular
3 x 3 real matrix playing in formula (1.1) the role of a parameter; ¢, ¢, are
arbitrary multiplicative functions not vanishing identically, i.e., they
are solutions of the funectional equation

(1.10) o(én) = o(Elo(n), &n #0,
with the restriction

(1.11) p #0;

a is an arbitrary function satisfying the equation
(L12) a(én) = a(&)+aln), & #0,
and the condition

(1.13) a#0.
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In formulae (1.6) and (1.7) a, and a, are arbitrary solutions of func-
tional equation (1.12) fulfilling the condition

(1.14) the functions @, and a, are lineary independent for ¢ # 0.

In formula (1.8), a, and a, are arbitrary solutions of (1.12) with
the restriction

(1.16) ~ a, # 0.

The functions » and o are a solution of the system of functional equations

%(én) = x(E)x(n) — o(E)o

(1.16) (én (m)—a(&)a(n), tn 0,
o(én) = x(&)o(n) +x(n)o(§),

fulfilling the condition

(1.17) o #0.

Remark 1.1. Restrictions (1.13), (1.14), (1.156) and (1.17) are not
essential. For if any of inequalities (1.13), (1.14), (1.15) and (1.17) were
not fulfilled, then the corresponding cases of (1.4)—(1.8) would be reduced
to case (1.3) or (1.4).

Remark 1.2. Equations (1.10), (1.12), and (1.16), as well as their
solutions, are well known (ef. {1]). By (1.11) and the properties of the
solutions of equation (1.10) we get

(1.18) @(&) #0 and ¢,(&) #0 for every £ %0, i=1,2,3.
In particular
(1.19) (1) =1 and ¢1)=1 for:=1,2,3.
Furthermore, from (1.12) we get

a(l) =a(—1) =0 ‘and a(l) = a(-1) =0,
a(—¢§) =a(é), a—§ =a(f) fori=1,2.

Using (1.16), we obtain

(1.21) (1) =1 and o(41l) =0.

(1.20)

The general non-singular solution of equation (0.1) represents all
homomorphisms F: GL(2, R)->GL(3, R), that means, all real linear 3 X 3
representations of the group GL(2, R).

From the properties of the solutions of equations (1.10), (1.12), (1.16)
it follows, in particular, that if inequalities (1.11), (1.13), (1.14), and (1.15)
are fulfilled, then they are also valid if we confine ourselves to £> 0
only.



System of functional equations 29

Then for every &£ > 0 we have

(1.22) @(€) #0, @(§) #0 (i=1,2,3),

(1.23) a() £0; a,() 20 in formula (1.8),

(1.24) the,functi:ms e, and a, in formulae (1.6) and (1.7) are linearly
independent,

(1.25) o(§) # 0.

Let us notice that for every non-singular solution F(x) of equation
(0.1) and for every g(z) satisfying equation (0.2) for z,y € GL(2, R),
we have

0
(1.26) gle) =0},

0

whcre ¢ is the unit matrix belonging to GL(2, R).

Now, g(z) = g(e-x) = F(e)-g(x)+g(e) = E-g(x)+g(e) = g(=)+g(e).
Thus we obtain g(x) = g(2)+g(e), and hence follows (1.26).

2. Auxiliary lemmas. In the sequel of the paper we shall repeatedly
apply the following lemmas (Lemmas 2.1-2.5).

LemMA 2.1 (cf. [11]). The general solution of the functional equation
(2.1) y(@-y) =y e(d)+r(@)

Jor all z,y € GL(2, R), where @ i8 an arbitrary not vanishing identically
solution of equation (1.10), i8 given by the formulae

(2.2) y(@) = Alp(4)—1] if ¢ #1,
(2.3) 7(@) =In|@y(4)] if ¢ =1.
In formula (2.3), D, is an arbitrary multiplicative function non-identically
zero for R—{0}; in (2.2) 4 8 a real pardmeter.
The essential results obtained by M. Kucharzewski and M. Kuczma
in their paper [10] will be referred to in the present paper as
LemmA 2.2 (cf. [10], p. 61). Every pair of fumctions f(z) and g(z)
satisfying for all @,y € GL(2, R) the system of functional equations
(2.4) f(@-y) = f(2)-f(9),

(2.5) §(@-y) =f(@)-§(y)+7(=),



30 Z. Karetiska

where f i8 a non-singular 2 X 2 matriz-function, § i8 a 2 X1 matriz-function,
must have one of the following forms:

ey o ] fou @]
(2.6) Jw) = ¢ [o ¢<A)] [w'u wl "

(%)

g(x) = [f(z)—e] 7 = [ )
¥a(®)

when ¢ £1 or ¢ =1,

p1(4) 0 P

(2.7) f(@) = 0'[0 os(d) oy §lo) =[f(2)—e]-F

tf o, #1 and @, # 1,

¢(4) 'P(A)a(d)] 1
oo ’

(2.8) flz) = 0'[ §(@) = [f(z)—el-q

0 ¢(4)
'if p #1,
29 f@ =0 T s - y@)—e1a,
| o(d) %(4)
when o % 0,
@10)  f@) =e| ° Lot g =o-[m"p’(""
0 ¢y(4) Ay [py(4)—1]
’:f P2 1,
(2.11) f@)=e, §(2) =[m'¢‘(‘”' ,
: In &, (4))
1 a(d4)] _ _ In (D (4)| + wa?(4)
(2.12)  f(2) =o-[0 P O G =”'[2m( 4 ]

if a £0.
In formulae (2.6)—(2.12) 4,, @ are constants, ¢ is a non-singular con-
stant 2 x 2 maftrix; 4,, 4, are constants;

BN

@ 95y D, D, (1 =1, 2) are non-trivial multiplicative functions.

On the other hand, it can easily be verified that each of the pairs
of functions (2.6)-(2.12), where the above-mentioned constants are arbi-
trary constants and the functions ¢, ¢,, ®, ; (¢ = 1,2) are arbitrary
multiplicative functions, actually satisfy the system of equations (2.4)
and (2.5).
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LEMMA 2.3. If a pair of functions F, (), g,(x) 18 a solution of the system
(0.1) and (0.2), then the pair of funclions Fy(z) = Y -F (z)- Y ! and g,(=)
= Y-g,(z), where Y i3 an arbitrary non-singular 3 X3 matriz, s also
a solution of the system (0.1) and (0.2).

In particular, if a pair of functions F(x) = C-F,(z)-C~' and g(z),
where Fy(x) takes any form of (1.2)—(1.9), is a solution of the system (0.1)
and (0.2), then we have

C-Fo(x-y)-C' =C-Fy(x)C~'-C: Fy(y)-C™*
and
g(@-y) =C-Fy(x)-C'-g(y)+9(@),

Fo(z-y) = Folx) Foly),
07t-g(@-y) = Fo(z)-C-g(y)+C " -g(a).

Introducing the function g.(z) defined by

71(x)
(2.13) go(z) =071 g(@) = | ral®) | = [%(®)], ¢=1,2,3,
s ()

we obtain the pair Fy(2) and g,(«), which, as well, is a solution of the
system (0.1), (0.2). Thus the function g,(@) is a solution of the equation

(2.14) 9o(Z-y) = Fo(2)-go(¥) + go(2),

where Fy(z) denotes the corresponding'_'matrix-function:(1.2)—(1.9) (accords
ing to the case considered).

It follows from (2.14) that, if F (z) is given by formulae (1.2)-(1.9),
then to find of the corresponding function g,(«), equation (2.14) has to
be solved.

For in the sequel, notice that if a pair F(x) and g(«) is a solution
of the system of functional equations (0.1) and (0.2), where

0
(2.15) F@)=C-| foz) 0 .01,
00 g4)

and the function

(2.16) fol@) = 07" f(z) 0



32 Z. Kareriska

is defined by one of the following formulae:

(2.17) fol@) = [‘P(A) 0 ].[wu @y ] — o(d)e
. ’ 0 (4)] |22 Tas | ? '
?1(4) 0
2.1 =
(2.18) fo(@) [0 %(A) ’
p(4) ¢(4)a(4)
2.19 = )
(2.19) Jo(®) [ o(4) ]
x(4) —a(4)

(2.20) Jo(@) = o(4) x(d) ],
then in order to determine the funection g(z),

71(z)
(2.21) g(@) = C-go(z) = C- | yu(2) |,

ya(2)
the following system of the functional equations has to be solved:
(2.22) go(2-y) = fo(@) Fo(y) + Go(),
(2.23) 7s(2°Y) = @3(4)y5(y) + a(2),
where
(2.24) Go(@) = ¢*1-g(a) = [7’( )]

7a(2)

Since equation (2.23) has been solved by M. Kuczma in [11], and equa-
tion (2.22) by M. Kucharzewski and M. Kuczma in [10] (p. 61, Theorem,
Lemma 2.2), then, in the case considered, all functions go(m) and g(z)
= C-go(2) are obtained immediately, and this gives all solutions of the
system (0.1), (0.2) (in this case).

Now, using (2.13), we get

71(z)

_Va( )
of equation (2.22),
va(z) is the solution of equation (2.23).

71(®) = 7:(2)

(2.25) {7:(®) = 7a(@) ]ls the solution

y Where §,(z) = [

The result of the above considerations can be stated in the form of
the following
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LEMMA 2.4. If a pair of functions F(z) and g(z), with F(x) defined
by Jormula (2.15) and fy(z) by formulae (2.17)=(2.20), 18 a solution of the
system of functional equations (0.1), (0.2), then

71(x) .
9o(@) = C7'-g(2) = | 7a(a) |, where Fo(a) = [Y' (m)l
(@) 72 (@)

i8 the corresponding solution of equation (2.22), and ys(z) 8 the solution
of equation (2.23).

Now, applying the method of proof analogous to that used by M. Ku-
charzewski and M. Kuezma in [10] (p. 61-63), we obtain

LevmA 2.5. If a pair of functions F(x) = C-Fo(z)-C~" and g(z) is
a solution of the system of equations (0.1), (0.2) and there exists a number
B # 0 such that for

2.26 _,80 GL(2, R
(2.26) wo—Oﬁe (2, R)

the matriz Fy(z,) —E is non-singular, i.e.,

(2.27) det [F,(z,) —E] # 0,

then

(2.28) 9(2) = [F(2)~E]-q,

where

(2.29) @1 = C-p = C-[Fy(0) —E]™"-go(w,)

18 a 3 X1 malriz.

A direct verification shows that such a pair of functions F(z) and
g(x) is a solution of the system equations (0.1), (0.2).

3. Determination of the function g(z) in the case where F (z) is of
the form (1.2)—(1.5). Applying the results obtained in papers [10] and
[11] and taking into account Lemmas 2.1-2.4, we have immediately
g(z) in the case where F(z) = C-F,(x)-C~! with a function F,(z) of
one of the forms (1.2)—(1.5).

TEEOREM 3.1. Functions F(x) and g(z) satisfying the system of funmo-
tional equations (0.1) and (0.2) for all x,y € GL(2, R), where F,(x)
= 0 1-F(x)-C i8 defined by formulae (1.2)-(1.5), must have one of the
Jollowing forms:

(3.1) F(z) = C-Fo(z)- 0,

3 — Annales Polonlei Mathematlel XXXVII, 1
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where Fy(x) is an arbitrary function of (1.2)-(1.5) with additional restric-
tions ¢ #1, ¢, =1 (1 =1,2,3), 0 #£0,

g(z) = [F(2)—E] q;
[@(4) 0 0] [z, 2,5 O

F(z) =0-|0 e(4) 0|2y @ 0)-C7Y,
(3.2) 0 o 1||o o 1

“1 [219(4) =11+ A32129(4) ]
g(@) = O | 412y 9(4)+ A [p(d) 2, —11],
In |Dy(4)] i
(if p #1 or ¢ =1);
10 O In @, (4)]
(3.3) F(z) =0C-|0 g (4) 0 07 g(@) =C-|A[py(4)—1]|;
00 pu(4) | Zalpa(4) —1]
100 In |P,(4)|
(34) F(z)=C-J010 C7Y,  g(z) =C-| In|d,(4) |;
[0 0 ¢y(4) A [pa(4)—1]
100 In|P,(4)|
(86) F(@) =C-E-C'=E=|010|, g(z)=0|Injd,(4)]|;
001 In |D,(4)]

[%(4) —o(4) 0
F(x) =0-|o(d) x(4) o]0,
0 o 1

(3.8) -
M[x(4)—1]—2;0(4)
g(@) = C-| }ho(d)+ A5[=(4)—1]];
i In |D,(4))
(9(4) g(d)a(4d) 0
F(r)=0-]0 lp(d) of-0°,
| 0 0 1
(3.7) _
A [p(4)—1]+2,p(4)a(4)
g(@) =0- A{p(4)-1] ;
i In [P, (4))
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[1 a(4) 0
Fz)=cC-|01 0 {0,
00 gu(4)
©8 In |©;(4)| + wa?(4)
g(z) = C- 2wa(4) ;
As[ps(4) —1]
1 a(4) 0 In|®,(A4)| + wa?(4)]
(39) F@ =cC-lo1 o|-c?, g =cC- 2wa(d)
00 1 In |®,(4)]

In formulae (3.1)-(3.9) 4,, 4;, 4, w are constants; &; (i =1, 2, 3)
are any non-trivial multiplicative functions;
A
q=0C-|2].
Ay

Remark 3.1. The cases where

p(A) 0 0]
F(x) =010 @e(4) 0‘ 07 = 0'{%1%, 1}'0—1’
| 0 0 1

or
ou(4) 00
F@)=C-|0 10 |-0'=0{p,1,p)-0"
0 0 g(a)]

can easily be reduced to case (3.3). Now, writting

001 010
J=|o10|=0" P, =|100|=rP",

100 001
we have

P(@) = C-{p1) 95, 1} 0" = 0T -(J {1, 95, 1}+d)-J - C!
= 0"{1:%) @,}:C"", where *=0J.
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However,
F(x) = C-{p1, 1, 95}-C!
= C-Py(Py {p1, 1, g3} - Py)- P, C”!
=C"-{1, 91, 9}'C**"', where C** =C-P,.
Analogously, the cases where

10 0
F(z) =C-|0 ¢s(4) 0]-07' =C-{1,¢,,1}-C*
00 1
and
(@1(4) 0 0]
Fa)=c-lo 10|0"=0{p,1,1}-0
.‘0‘ 0 1-

are reduced to (3.4).

On the other hand, it can easily be verified that each of the pairs
of functions (3.1)-(3.9) for arbitrary constants and arbitrary non-trivial
multiplicative functions actually satisfy the system of (0.1) and (0.2).

Thus we obtain all solutions of (0.1) and (0.2) in the case where the
function F,(x) is defined by formulae (1.2)-(1.5). The cases are still to
be considered where the function F,(z) takes the form (1.6)—(1.9).

4. Determination of the function g(z) in the case where F (r) is of
form (1.6), (1.7) and (1.8). In this section first of all we shall consider
the case where the function F,(z) in the formula F(x) = C:Fq(x)-0~" has
form (1.6), (1.7) or (1.8), with the additional restriction

(4.1) (&) £1 for £>0.

Taking into account restriction (4.1), we see that there is & number
&, > 0 such that '

(4.2) @(&) #1

(of course, &, # 1, since ¢(1) = 1). Writing
VE 0

(4.3) Ty = [0 ‘/e—o ’

we have detw, = &, > 0 and z, € GL(2, R). Moreover, in the present case,
F, being of forms (1.6)—(1.8); we obtain

(4.4) det [Fo(me) —F] = [@(§6)—11* # 0
in view of (4.2).
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Applying Lemma 2.5, we obtain

THEOREM 4.1. If a pair of functions F(x) and g(x) 18 a solution of
the system of equations (0.1) and (0.2), where Fy(x) = C~'-F(z)-C is of
one of forms (1.6)-(1.8), and if (&) £ 1 for £> 0 (i.e. (4.1) is fulfilled),
then
(4.5) 9(#) = [F(a)—E]-q,
(g, 138 in Lemma 2.5, (2.29)).

We can directly verify that the pair F(x) and g(«) satisfies the system
of equations (0.1), (0.2). Let us now considerer the case where the function
F(z) has form (1.6)—(1.8) but condition (4.1) is not satisfied. Since the
function ¢(&) is either even or odd, we have two possibilities: either

(4.6) @(8) =1
or
(4.7) o(E) = sgné.

We shall discuss these two cases separately.

In order to determine the corresponding functions g(z) = C-g,(x) in
case (4.6) we solve equation (2.14) with a function F,(z) of forms (1.6),
(1.7) and (1.8) with the funection ¢(4) =1, i.e.,

go(z-y) = Fo(2)"94(y) + 90(),

whero
10 q(4)
(4.8) Fo(z) =10 1 ay(4)],
001
1 e,(4) ay(4)
(4.9) Fo(z) =101 o |
) 00 1
1 a,(4) }a}(A)'+a,(A)
(4.10) Fo(z) =101 a,(4)
00 1

By [7] (Theorem 0.1), [8] (Theorem 0.1), [9] (Theorem 0.1) we get
the general solution of equation (2.14) in every corresponding case
(4.8)~(4.10).

Thus we obtain two following theorems:

THEOREM 4.2. If a pair of functions F(z) = C-Fy(z)-C~! and g(x)
18 a solution of the system of equations (0.1) and (0.2), where F,(x) is defined
by (4.8), (4.9) or (4.10) (i.e., Fy(x) 18 of form (1.6), (1.7) or (1.8) with the
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additional restriction ¢ =1), then
In |®,(4)|
(4.11) g(@) = C-go(x) = C-|In|D,(4)]|
0
in case, when Fy(x) is defined by formula (4.8),
(4.12) g(x) = C-go(x)
In|Py(4)] +3e1a}(4) + $Ex a2 (4) +8,05(4) a5 (4)
= (- e;a,(4) +&a3(4)
& a,(4)+&a,(4)
in case where Fy(x) is defined by formula (4.9),
(4.13)  g(@) = C-g(2)
In [®, (M) + e} (4) +  wal (A) +2wa, (A) ag(4)
= Q- 27a,(4) + 2wa,(4) + wal(4)

2wa,(4)

in case (4.10).

In the above formulae ¢, &, &, 7, ® are constants, &,, D, denote
multiplicative functions not vanishing identically.

We can directly verify that every such pair F(x) and g(z) actually
satisfy the system (0.1), (0.2). .

In order to determine the corresponding functions g(z) = C-g,(x)
in case (4.7) we solve equation (2.14) with a function Fy(x) of the form
(1.6), (1.7) and (1.8) with the function ¢(4) = sgn4, i.e.,

go(z-y) = Fo(2):9o(y) + go(2),

where
10 q,(4)
(4.14) Fo(z) =8gnd|0 1 ay(4)|,
001
1 a,(4) a,(4)
(4.16) Fo(z) =8gnd|0 1 0 ,
00 1
1 a,(4) aj(4)+ay(4)
(4.16) Fo(x) =8gnd]0-1 a,(4)

00 1
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Applying the results of papers [7] (Theorem 0.2), [8] (Theorem 0.2),
and [9] (Theorem 0.2), we know the general solution of equation (2.14)
in every corresponding case. Now, in either of cases under consideration,
g(z) = [F(x)—FE]-q. Thus we have

THEOREM 4.3. If a pair of fumnctions F(z) = C-Fo(x)-0~' and g(2)
s a solution of system (0.1), (0.2), where F,(x) is defined by (4.14), (4.15)
or (4.16) (i.e., Fy(z) is the form (1.6), (1.7), (1.8) with the additional restric-
tion @(£) = sgné), then

(4.17) g(x) = [F(2)—E]-q.
On the other hand, it can easily be verified that all such pairs of

functions actually satisfy the system of equations (0.1) and (0.2).

Remark 4.1. If a,, a, in formulae (1.6) and (1.7) are linearly depend-
ent or if in formula (1.8) @, =0, then these cases reduce to (1.4), in
which all solutions of equation (2.14) are known (cf. (3.7), (3.1)). For
example, we demonstrate the consideration in case (4.8). We proceed
in an analogous way in the remaining cases.

I. The function F,(x) has form (4.8) and the functions a,, a; occurring
in formula (4.8) are linearly dependent. We shall distinguish two sub-
cases:

(4.18) a,(§) =0 for £ £0,
(4.19) a;(¢) £0 for & #0.
Now let a; = 0. Then putting

001 010
(4.20) P,=f100], P'=]001}],
010 100

we get
010]J100 001

001]-]01a|-|100|=rP"Fyz)P,

100]j001 010
1lag O
=I01 0]=F1(m).
001

Thus F,(r) = P,-F,(z)-P;' and equation (2.14) becomes
go(z-y) = Py-Fi(2)-Py'-go(y) + go(a).
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Consequently,

(4.21) Prlgo(z-y) = Fy(2) [P;'go(¥)]1+P5 ' go(w).

Now let us write

(4.22) 5} (w) = Py'-go(2). ‘

From (4.21) it follows that the function g,(z) satisfies the equation
(4.23) (2 y) = F(2) 9:(y) + 0:(2), .

where F, (z) is equal to F,(z) defined by (1.4) with a = a,and ¢ =¢, = 1,
i.e., this case is reduced to (3.9).
Using (3.9) and (4.22) we get

(4.24) g(@) = C-go(2) = O-Py-gy(2) = C*-1(2)
In|®,(4)|+ wa;(4)
= (C* 2way(4) R
In |®,(4)|

C e GL(3, R) and C-P; = C* ¢ GL(3, R).
Now let a, and a, be linearly dependent and let a, # 0. Thus, there
exist numbers 7, 5, such that

7i+7;>0 and 70,4 7na =0.

It follows from a, = 0 that », #* 0 and consequently we obtain a; = 7a,,
where v = —,/n,, and so

10 a 100][tao0 100
Fo(x) =101 ¢, =]z 01|-|0O1 O] 0O01].

001 010]|0o0 1 —710

Putting
100 100 la O
010 —710 001

we get

Fo(x) = U-Fy(z)-U™' or Fy(z)=U"'Fe(2)-U
and equation (2.14) has the form

go(@-y) = (U-Fy(@) U~)-go(y) +go(2).
Consequently,

(4.25) U t-go(z-y) = Fox)- (T -go(y)) + U gy ().
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Now let us define

(4.26) 9:(@) = U™ -go().
Using (4.25) wo see that the function g,(x) satisfies the equation
(4.27) 0:(29) = Fa(2) ;) + (@),

where F,(z) is equal to F(z) defined by (1.4), with ¢ = a,and ¢ =g, =1,
i.e., the case considered is reduced to (3.9). Using (3.9) and (4.26), we get

(4.28) g(@) = C-go(a) = (C-U)-gs(m) = C**-gy(2)
In|P,(4)|+ waj(4)
=C*". 2wa,(4) ,
In [Py (4)]|

where C € GL(3, R) and C-U = C** ¢ GL(3, R).

We omit the deductton in the other cases as fully analogous to that
just performed.

It remains to consider the case of the function F(x) = C-F,(x)-C!
with F,(z) defined by (1.9). This problem will be considered in subse-
quent sections.

5. Determination of the function ¢(z) in the case where F(x)
= C- Fy(x)- O~ with Fy(z) defined by (1.9). First of all we consider the
case when the function F,(x) takes the form (1.9) with the additional
restriction that the multiplicative function is not trivial:

(5.1) fp(¢) 1 for > 0.
By (5.1) there exists a number &, > 0 such that
(5.2) bip(6) #1

(of course, &, # 1).
Denote, for brevity,

VE O
5.3 — 1 v .
(8.3) o [0 VE:
Since
(5.4) detz, = £, > 0,

we have that z; e GL(2, R) and from (1.9), (5.3), (5.2) it follows that
the matrix Fy(z,) — F is non-singular, i.e.,

(5.5) det[Fy(ze) —H] = [£,9(£) —1 0.
In fact,
Fo(z)) —E = @(&){&1) &, &1} —F

= &ho(&) B—F = [§p(&)—1]E.

Consequently, using Lemma 2.5, we obtain immediately
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THEOREM 5.1. If a pair of functions F(z) and g(x) t8 a solution of
the system of functional equations (0.1) and (0.2), where Fy(z) = C~'-F(z)-C
s defined by formula (1.9) with the function (&) & 1/& for £> 0 (i.e.,
Ep(&) £ 1 for &> 0), then

(5.6) 9(z) = [F(2) —E]-q,,

where q, i8 given by (2.29).

On the other hand, it can easily be verified that any such pair of
functions actually satisfies the system of equations (0.1) and (0.2).

In the sequel we shall consider the case where the function F,(z)
has the form (1.9) but condition (5.1) is not fulfilled, i.e., for £ > 0

(6.7) fp(f) =1.

Now we have for the multiplicative function (&) only two possibilities:
(5.8) Ep(é) =s8gné for all £ #0

or

(6.9) fp(&) =1 for every & # 0.

It follows from (b.8) for £ # 0

(5.10) ¢(§) =1/l&].

From (5.9) we have for & # 0

(5.11) p(§) =1/¢.

Using on formulae (5.10) and (5.11), we obtain for F,(x) defined
by (1.9):

o} 20y, %19 Ty
(6.12) Fo(z) = l_jl— D11 %g1 $11T3a + T12¥1 T13Tsg

5 203,39 @3
and

@ 201114 T}y
(5.13) Fo(w) = —;— Z11%91 T11%93 + T12%g; T1as |-

@5, 2041 %5y 3,

Introducing the function g,(x) defined by (2.13), i.e.,
go(®) = 0" '-g(2) = [%(2)] (¢ =1,2,3),

we obtain a solution of equation (2.14), where F,(®») denotes the corre-
sponding matrix-function (5.12) or (5.13) (according to the occurring
case). All solutions of this equation (2.14) in both cases (i.e., when F\(z)
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is defined cither by (5.12) or by (5.13) have been given by the author
in paper [4] (cf. p. 6, Theorem) and [5] (cf. p. 219-220, Theorem 0.1).

The method used in papers [4] and [5] is analogous. However,
the situation in [5] is more interesting and more complicated, and where
exist non-measurable solutions whereas all solutions in [4] are measur-
able.

Applying the results of papers [4] and [6], we know all solutions
go(x) in both cases; hence we know also g(x) = C-g,(x). Thus we obtain
the two following theorems:

TaEOREM 5.1. If a pair of functions F(x) and g(x) is a solution of
the system (0.1) and (0.2), where F,(x) = C '-F(2)-C is defined by
formula (1.9) with ¢(A4) = 1/|4| (i.e., Fo(x) is defined by formula (5.12)),
then

(5.14) g(z) = [F(x)—E]-q,
where q = C-qq.
Now
g(@) = C-go(w) = C-[Fo(w)—E]- ¢,
= [C-Fo(2)-07-0—C-E-C*-0)-¢o = [F(2) —E]-(C"q,)
= [F(2)—E]-q.

THEOREM 5.2. If a pair of functions F(x) and g(z) is a solution of
the system (0.1), (0.2), where Fo(x) = O~'-F(x)-C is defined by formula
(1.9) with @(4) =1/4 (i.e., Fy(x) 18 defined by (5.13)), then
(5.15) g9(z) = [F(2)—B]-g+9g"(2),
where

v(211) 9(21s) ]

P13 19

n v(®21) v(21a)
T T

(1) v(@s,)
Ty Tag

(616) ¢°(0) = 0g}(@) = O+ %l

v(031) ¥(@a)
Ty Ty

In formula (5.16) v is a derivation of R.
By a derivation of R we mean any function y: R—>R satisfying
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the conditions:

(6.17) v(é+n) = p(&)+vin),
(5.18) v(én) = ny(&)+ Ep(n)

for all & # in R.

Numerous and interesting properties of derivations are given and
proved in papers [5], p. 220, [3] and [15], p. 120.

In particular, if y is a derivation, then it is well known that y(0)
=y(1) =0, p(—£) = —p(£) and p(&°) =p&'y(§) for £ in B and
p=12,... If n #0, then

(1) __¥m 4 v(_{) _ (&)

7 n? 7 n?

Evidently, the function y: R— {0} (i.e., the function identically 0)
is a derivation of R. This function will be called the trivial derivation
of R.

Furthermore, every derivation of R vanishes on the algebraic closure
@ of the field Q of rationals in R and has a dense set of periods. Every
derivation of R, according to the terminology introduced by 8. Golab,
is a microperiodical function. Every rational number is a period of an
arbitrary derivation of R. It is well known that any measurable deri-
vation of R is trivial (cf. [3]), but there are non-trivial derivations of R
(cf. [15], p. 124, Corollaries 1 and 1’). Every non-trivial derivation of
R must be a non-measurable function.

Thus we get the following

COROLLARY 5.1. Any measurable solution of (2.14), where Fo(x) denotes
the matriz-function (5.13), 18 of the form go(x) = [Fo(z)—E]-¢,-

In fact, under the assumption that the solution g,(x) is measurable
we infer that y is a measurable derivation of R (i.e., y is identically 0)
and consequently we obtain

gs(z) = [0] =

[ — N — R

The assertion of Corollary 5.1 is thus proved.
In the case considered we have g¢*(z) = O-g;(x) = [0] and g(2)
= C-go(7) = C-[Fo(2)—E]) ¢, = [F(2)—E]-q, where g = C-g,.

Remark 5.1. In both cases (those of Theorem 5.1 and 5.2) we can
easily verify that each of the pairs of functions F(z) and g(z) actually
satisfy the system of (0.1) and (0.2).
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Thus, we have considered all the possible cases and so the proof
of the following theorem has been completed.

THEOREM 5.3. AU solutions ¥ (w), g(x) of the system of functional
equations (0.1) and (0.2) for z,y € GL(2, R) are given by the following
formulae:

1-9 formulae (3.1)-(3.9),

10. F(z) = C-Fo(x):C~', where Fo(x) is an arbilrary funclion of
(1.2)-(1.8) with additional restrictions:
o(6) #1, g (§) #1 (i #£1,2,3) for § #0,
g(z) = [F(z)—E] ¢;
11. F(z) = C-Fy(x)-C™Y, where Fy(z) defined by formula (1.9) with
additional restriction £p(&)#£ 1 (i.e., @(£)
#1/E for £ #0),
9(@) = [F(2)—E]-q;

10 ad)
2 P =001 atfo, e o ebive lnars
001
In|®,(4) - SR TIYS
(@) = C-| m 18,4y, ‘z‘h::; ;5; ,;di, are non-trivial multiplicative
0
1 a,(4) ay(4)
13. Fx) =C-[0 1 0 07,  where a,, a, as above,
00 1
In |, (4)]+ 4 esai(4) + $2303(4) + &0, (4) a5 (4)
g(z) =0 &,0,(4) 4 & ay(4) ’
& ay(4)+&ay(4)

where @, i3 a non-trivial multiplicative function;
1 a,(4) $ai(4)+ay(4)

14, F@) =0C-l01 a4 |-,
00 1
In |®,(4)| + } wa3(4) + 7ai(4) + 2wa, (4) ay(4)
gl@) =C- wa}(4)+27a,(4) + 2way(4) ;

2wa,(4)
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2
o3, 224,24, Ty,
1
-1
15. F(z) =C- 7 11Ty Ty1 %oz + 12Ty T13T2 |- C77,
2
Ty 224, T39 w§2

9(z) = [F(x) —E]-¢+0-g5(2)

—

it

Y(®11) p(213)
D1y Dys

Y(211) ¥ (@e0)
T11 LAY

+ ¥ (@2) 1"@1:)

1
= [F(0)—B]-q+C-— ;{
L3 Ty

4

-~ —

v(@a1) v(%as)
Ta1 T2

where y i8 anm arbitrary derivation of B, q = C-q,."

In formulae 1-15, A, w, ey, &, %, &,4; (¢t =1,2,3) are arbitrary
congtants; C is an arbitrary constant matrix € GL(3, B); ® is the 3 x3
unit matrix; 4 (as usual) denotes the determinant of the matrix
z € GL(2, R); ¢, ¢; (¢t =1, 2, 3) are an arbitrary multiplicative functions
not vanighing identically; e, a; (¢ = 1, 2) are arbitrary functions satis-
fying equation (1.12) and not vanishing identically; a, and a, are linearly
independent in formulae 12, 13. (In formula 14, e, # 0.) ¢ = C-¢,, Where
g, i8 an arbitrary constant vector.

On the other hand, it can be easily verified that each of the pairs
of functions 1-15 actually satisfy the system (0.1), (0.2).

~
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