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On uniqueness and successive approximations
in the Darboux problem for the equation

xy
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This paper contains certain generalizations of the results presented
in [5], namely, those concerning the uniqueness and the convergence
of successive approximations in the Darboux problem. The conditions
quoted in [5] and sufficient for the uniqueness and the convergence of
successive approximations referred to the conditions of the Krasnosielski-
Krein type, transferred to the field of hyperbolic differential equations
from the sphere of ordinary differential equations ([4]).

In note [1] F. Brauer has quoted certain more general conditions
ensuring the uniqueness and the convergence of successive approximations
in the field of ordinary differential equations and including the conditions
of Krasnosielski and Krein.

Below, conditions of the Brauer type are used in reference to vector
equations of the form '

Ty
1) uxy =f(m7y7 Uy Uz, uvajfg(w7 Yy 8yt u(s, 1), us(s,t) ugs, t))det)
00 _

with boundary conditions

(2) u(z, 0) = o(x)+7(0), w(0,y)=r1(y)+0(0).

The problem consisting in finding a solution of equation (1) ful-
filling conditions (2) will briefly be called problem (D).

The functions f(x,y,%,p,q,7), g(x,¥,s,t,u,p,q), olx), (y),
appearing in it, are suitably defined on E, = R x ¥, E,= R*x X}
0,a>,<0,b>,a,b >0, where K = (0,a)x (0,b), with values in X.
X denotes a Banach space.

We say that the vector function u(z, y) with values in X belongs
to the class C*(R), if it is continuous on R together with its partial de-
rivatives ou ou an Fu
ox’ oy cxoy’
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2 B. Palczewski

By a solution of problem (D) we mean the vector function u(z, y)
e C*(R) fulfilling equation (1) on R and conditions (2), where ¢ and =
are of class (" on 0 <z <a and 0 <y < b, respectively.

1. The formulation of the theorems on uniqueness and successive
approximations will be preceded by some auxiliary data.

Brauer’s conditions ([1].)

A pair of real functions {y,,v,} is, according to the definition,
included in class (Bg), a > 0, if the following conditions are simultaneously
fulfilled:

(3!) the funections y(f,r) with ¢+ =1, 2 are continuous and non-negative
for te(0,a) and r >0,

(32) there exist functions A4(?), © = 1, 2, defined for ¢ ¢ (0, a> and such
that A0) =0, Aft) >0 for 1¢(0,a> and lim 22 _ o
. -0t Az(t)

(3%) if a function «(t), continuous and non-negative on <0, a)> and con-
tinuously differentiable on (0, a), is such that u'(t) = y(t, u(t)) for
te(0,a) and %(0) =0, then u(?) < A\(?) for te <0, a),

(34) if a function »(¢), continuous and non-negative on <0, a) and con-
tinuously differentiable on (0, a), is such that v'(¢) = y,(t, v(?)) for

. v(t)
dl
te(0,a) an g.l.I.EAM)
In order to apply the pair {y,,v,} € (Bs) to the investigation
of problem (D) we discover some further properties of functions y;:

= 0, then »(?) =0 on <0, a).

(3%) functions r—yt,r), ¢ =1,2, are non-decreasing on <0, -+ oo) for
each fixed t¢(0, a),

(3°%) functions t—>y.(¢,rt), + = 1, 2, are non-decreasing on (0, a) for each
fixed » > 0 (cf. [7], Satz 4, condition ).

By (B;) we understand the class of all pairs {y,, y,} of functions
fulfilling simultaneously the conditions (3!)-(3%). The following facts easily
may be checked.

{
LEMMA 1. If {y,, y,} € (B}), then the functions t—yi(t, f w(s)ds) for
o .

t=1,2 are non-decreasing with any function w(8) > 0 mnon-decreasing
on <0, a).

t
Indeed, from the fact that the function z(f) =t f w(s)ds is non-
0

decreasing it follows that the condition {y,, y,} € (B3) implies the function
vi(t, tz(t)) for i =1,2 to be monotone.
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LEMMA 2. If the function v(t) is non-negative, absolutely continuous
on {0, a)> and such that v(0) = 0 and almost everywhere on (0, a) we have
the inequality

(4) V() <wilt, o)) for i=1,2,

where {y,, .} € (Bys) and the condition (3% 48 fulfilled, then v(t) =0 on
the interval (0, a).

The proof is analogous to the proof of Theorem 1 of [1].

No assumptions concerning the right side of equation (1) have been
considered as yet. We shall now discuss the case where ¢g(z, y, s,t, u, p, q)
fulfils the Carathéodory conditions.

LeEMMA 3. Let the veclor function g(x,y,8,1,2,...,2m) defined for
(z,y), (s,t)eR, 24X, 1 =1,..., m, with values from X fulfil the follow-
ing conditions:

- 1° the function (s,1) ~>g(z, vy, 8,1, 2, ..., 2m) i8 measurable in Bochner's
sense for each fixed system (x, Y, 2y ..., 2m),

20 with 1 =1, ..., m the function (z,¥y,2;)—>g(x, Y, 8,8, 21, ..., ;) 18
continuous for each fized system (8,1, 2y, .cy 21_1y 2141y veey Zm),y

3° there exists a function @, non-negative and summable on E, and
the inequality

gz, ¥, 8,8, 21y ey 2m)l| < @(8, 1)

holds for (z,v), (8,1) e R, 2, ..., 2me X.
Then for each (z,y)e¢ R

(s, t)"ﬂ(wy Yy 8y t,2:(8, 1), ey Zm(s, t))

18 on R a measurable and integrable function in Bochner’s semse (see, for
instance, [2], Chap. III) and

Ty
(, ?/)*ffg(w’ Yy 858, 2(8,8), vy 2mls, t))d'gdt
00

constitutes a continuous function on R, while {z(s,1t),...,2n(s,1)} 18 an
arbitrary system of functions continuous on R.
We may easily leave out the simple proof of this lemma.

Assuming at present that the function f(z, v, u, p, q,r) is contin-
uous on ¥, while g(z, v, s, t, u, p, q) fulfils the assumptions of Lemma 3,

1*
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we may say that problem (D) for equation (1) is equivalent to solving
the integral equation

vr
5)  s(2,9) = f{z, 9, 0@+ @)+ [ [ s(u, v)dudv.
00

xry

v z )
o'(@)+ [ s(a, v)dv, )+ [ s(u, y)au, [ [ glz, y, u, v, o(u)+(0)+
(1] 0 00

+[[ str,vydrat, o'y + [s(u, vy, o)+ [ s(r, v)dr)dudo)
0 0

00

in the range of the functions s ¢ C(R).

Among the assumptions that we make for the functions f and ¢
the following conditions play the most important role (cf. [8], Beispiel 4,
P- 203):

(6y) |f(zyy,u,p,¢,7)—f(2,9,%,P,9, P

<M, y)pday, Il —al) + w (2, y)yizy, 2llp - Bl) +
+oe, vwlay, vig—an+ M2 s, i-1,2,
(65) Ilg(m,y,3,t,u,p,q)—g(w,y,s,i,ﬂ,To,ﬁ)ll
< A2z, y)vilwy, lu—a))+ pP(@, y)pday, llp — )+

+"’?)(w1 yvixy, ylig—aqh, +=1,2,
where (z,y),(s,t) e R,y >0 and for i,j=1,2,17, 4, W, 5 are
arbitrary non-negative functions on R for which

_ '1(1'1)(97’ y)‘*‘!"(il)(wy y)‘l‘”g'l)(a” Y)+nlz,y) =1 on R
and .
@ @) @ = R f ; — 9
A(@, y)+ ui (@, y)+vi (z,y) =1 on or t=1,2.

2. We now proceed to presenting the theorem on uniqueness.

THEOREM 1. If the vector function f(z, vy, w,p,q,r), defined and con-
tinuous on E with values from the space X, fulfils inequality (6;5) while
the function g fulfils the assumptions of Lemma 3 and inequality (6,) and
{vy, vo} € (B®), then problem (D) has at most one solution in the class
C*(R). ‘
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Proof. If s(x,y) and s,(x,y) were two solutions of equation (b),
then putting z(x, ¥) = |iss(x, ¥) —s(x, )| for (z,y) e R we should obtain
on the basis of (6;) and (6,) the inequality

(M 2@, 9) <A@, vy, jq fz(u, v)dudo)+
00

v

+y§”(m,y)%(9’y’ J z(x, v)dv)—l— (1)( 73/).’4’i($yyyj'z(u,?/)d‘u;)+
0

o

+ 77:‘(2:; Y) fbf [12-2)((13, y)w(wy,:j’f‘z t, r) dtdr) -t

u
+ v, y)zp,(:ny, yf 2(t, fv)dt)] dudv, i=1,2.

Now putting 4, = {(z,y): 0<ry<o} "R for 6 >0 we defme on
{0, ab) a continuous and non-decreasing function w(¢) >0, w(0) =0,
in the following manner:

(8) - w(g) = sup z(z,y)

(zyeds

for which the inequality z(x, y) < w(xy) occurs on R and this gives the
following estimation on the basis of (7):

@) 2z, 9) < @, ywlo, Jyj?w(uv)dudv)"' ot

v

m?; )f:oy[).(“) z,Y) y),(a:y,bffw tr dtdr) ot

+ 1’?)(37, y)w(wy, Y J w(t’v)dt)] dudv
0

xy

<tp,-(wy,j w(o)da), t=1,2.
0

On the basis of Lemma 1 and (8) we obtain the following inequality
for any point (z, y) e A;: ' *
4

2@, 9) <wlt, [ w(0)ds), i=1,2;

0
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hence it follows that
{

(10) o(t) gw,-(t, f w(a)da), t1=1,2,
. 0
for te(0, ab).
¢
Putting v(t) = [ w(s)do in (10) we see that the function v(t) fulfils

0 .
the assumptions of Lemma 2 on <0, ab), hence it follows that »(f) =0
on the interval <0, ab), which on the basis of continuity w(c) gives
w(o) = 0 for o € <0, ab) and because of (8) also z(x, y) = 0 for (z, y) ¢ R.
This proves the ‘‘uniqueness’.
Note 1. Assuming w,(t, r) = Cre, p,(t, r) =kt/r, where C, k and a

are such positive constants that 0 < e <1 and k(1—a)<1, we can
easily state that {p,,v.} e (B2). For this purpose it is sufficient
to assume that

A1) =[C(A—a)t]™®  and  A,) =1F.

From Theorem 1 it follows that the conditions

If(e, 4, 7, B) =@, ¥, w, Wil < i, iy, [u— )+ “E o~
and |

lg(z,y,s,t,u)—gl(x,y,s,t,w)| <plxy,ijv—72]), +=1,2,

where (x, y), (s,t) e B, zy > 0, and the functions 4;, u; are non-negative
and integrable on R, while

Mz, y)+ulz,y) =1 on R for i=1,2,

secure the uniqueness of problem (D) for the equation

zy

= f(wa Y, '“'1[{ g(wa Y,y 8,1, u(s, t)) d&'dt),

00

u
oxoy

(1%)

if the inequalities 0 < a <1 and k(1 —a) <1 are fulfilled.

On the other hand, we shall show that it is sufficient to assume
0<a<l1l and k(1—a)2< 1. Indeed, if z(»,y) = |ux, yv)—ux, v)|,
where %, and u, constitute the solutions of the equation

1)  u(z,y)
t

gls,t,v,w, u(v, w))d'vdw]dsdt ,
0

*

.
—a@+r+ [ 1]s, 1, us, ),
00

L,
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we have with z*(w y) = max 2(v, w) the estimation
0o
ISw<y

Ty

f pilst, 2*(s, O)]dsdt, i=1,2,

where on the basis of Lemma 1 of [5] we obtain 2*(z, y) = 0 on R, and
thus u,(x, y) = u(x, y) on R. Theorem 1 does not thus include the opti-
mal result. The above situation shows that class (Bj3) is too narrow if
we want to apply it to equation (1) and this suggests that it would
require a consideration of comparative functions of five variables of the
type that has been dealt with by Shanahan ([6]) and Walter ([8), Satz
7, p- 201). '

3. We shall proceed now to the presentation of the theorem on
successive approximations including the argumentation concerning their
convergence, following the general conception of T. Wazewski ([9]). The
successive approximations can be defined recurrently by

(11) sz, y) = @(zyY)y  Satrlw, y) = Fsulz,y), n=0,1,2,..,
where the operation F is defined for any continuous function s(z,y)
by the right side of equation (5) while ¢ ¢ C(R).

THEOREM 2. If the vector functions f(x,y,u,p,q,r)and g(z,y,8,t,%,p,q)
]‘ulle the assumptions of Theorem 1 and, moreover, M = supllf T,Y,%,P,4q, )|
< oo, then the successive appro:czmatwns (11) are umformly convergent on R
to the unique solution of problem (D) for equation (1).

Proof (cf. [3]). Let, us first emphaswe that to prove the correctness
of the statement it is sufficient to show, the space X being complete,
that the sequence (11)—{ss(x, y)}—fulfils Cauchy’s condition of uniform
convergence on R. Let M = mlg,xllcp(w,y)ﬂ and N = max[M, M]. Then

max|sp(z, ¥)i <N for n=0,1,2,..
R

Further we assume

(1?) On(z, ¥) = Sup |$n:m(z, ¥)—s8u(z, Vi, n=20,1,2,..,

l<m<o
(13) wn(6) = sup G(xz,y) for O0<Lo<ab
(z.W)edq
and !
(14) w(o) = limsupwy(s) for oe<0,ab).
n—>00

1t follows from the above that {d,(x,y)} is a bounded sequence
of measurable functions, {wa(0)} is also a bounded sequence of measurable
functions and (o) is a non-decreasing and bounded function, thus being
integrable.
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On the basis of (6;) and (6,), (11) and (12)-(14) we obtain

182 sm1(@y ¥) —8pnr(@, Y| = 1F8pim(®, y) —Fs,(x, y)|

vz
< 1%, ey, [ [ 1onnits, o) —satre, o)l dudo) +

00

+ @, 9)w{an, @ [ Ionim(z, v) —sale, o)ldo) +
0

‘I"’i‘l)(a"f ?/)%-(:L"l ’ yf||sn+m(ua Y) —8ulu, ?/)Hdu)'l'
0

Ty v ou

+ ) [ [zgﬂ’(w,y)%(wy, I [ V8w mty 7 = salt, watr) + ...+

y,
Y 00 0

+ V(iz)(a’y y)'/’i(w% yj 180+ mity ©) —8a(, Q’)Hdt)] dudv, ¢=1,2,
0

whence in accordance with (12) and the inequality éa(a, v) < walzy),
we further obtain
y T

(13) bl y) < AWV(e, y)wpi(azy,J" 8, v)dudv)+;..+
00
+’7’(m v) f [2.,‘):0 @/)vp,(a:y,ffa,,(t,r)dtdr)+...+

00 )

+ 12, ?/)V)i(il’?/, yJ du(t, v)dt)]dudv
o

< Az, y)w(wy, Jyf wn(uv)dudv) + .+

4+ a'?; Jl” [A(Z)m Y) %(M/,JJ wn(tr dtdr)-{- -
00 o

+52@, oy, v f wn(to)at)| dudv
0

Ty

< V’i(myaf wn(a)do‘), t=1,2.

0
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From (15), just as in the proof of Theorem 1, it follows that

t

(16) “wna(t) <wilt, [ wilo)do)
0
with » =0,1,2, ..., ¢=1,2, and te(0, ab).
Relation (16) in accordance with (14) and the contlnulty and mono-
tonicity of the funetion (t,r) with respect to r, ¢ = 1, 2, and Fatou's

lemma results in
t

(7) o) <yt [ w(o)do), i=1,2,
0
for 1€ (0, ab).
¢

Assuming now o(f) = f w(o)de in (17) we obtain inequality (4)
1]

almost everywhere on <0, ab>, which in accordance with Lemma 2 and
the monotonicity of the function w(o) results in w(o) =0 on (0, ab>.

It thus follows from (13) and (14) that the sequence {d:(z, ¥)} is
uniformly convergent to zero on R, which in relation to (12) proves
that the sequence {s,(z, y)} is uniformly convergent to a vector function
$(xz, y) which is continuous on R. In this situation it is sufficient to pass
from » in (11) to infinity, to see that s is the only fixed point of the
operation F and thus the solution of problem (D) for equation (1).

Similarly, we may prove the uniqueness and the convergence of
successive approximations in problem (D) for equation (1) if its right
side fulfils conditions:

(18) |f(z, y. u,p,q,7)-flx,y, %, p,q, 7

<M(w,y)w«(w—i-y,Hu—ﬁil+Hp—?!I+Hq—f'1H)+”‘(;”)II A, i=1,2,
and also '

(18)  lg(x,y,8,¢, u,p, 9 —9g(z,y,8,1, %, p, g
<ydz+y, llv—al+lp—pl+lg—a), i=1,2,
with (z,y),(s,t)e B, z+y >0, {(a+2)y,, (a+2)y,} e (Biss), and
Mz, y), pz,y) >0 on R,
Max, )+ pile,yy=1 on R for i=1,2.

Note 2. Obviously the theorems obtained above include a series
of particular cases which may be obtained by a proper modelling of the
space X as well as a few comparative functions {y,, v,}. If for instance

X=10,p>1, constitutes a space of »-vectors u = {u,, ..., u,} of scalars

Uy, ..., , and has the norm |u]| =(2 lur/P)'"”, then we can easily for-
k=1
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mulate analogies of Theorems 1 and 2 for the finite systems of equa-
tions of the form

EE%E.—-f @ «° u le ou, gﬂl
3:1)33]_ KTy Yy Uyy oeny Uy, 3w’m’8w’8y’m
0 L '
Uy
ya_yff 91(w1 Yy 85 Ly Uy(8, 1)y uns (8, 1),
y 00
oU, (8, t) ouy(8, 1) ous(s, 1) ou,(s, t))
%5 y coes %5 y a ’ ...,—a'z— det, vee
Ty . (
T ou,(s, t
ey ’J _l],(fb‘, Yy 8y 1y Uy(8y8)y .oy U(s, t)vla—s,)a
00
ou,(8,1t) ou,s,t ous, 1
., ;t’ ) ‘fu’ ),...,—(at’—))dsdt), E=1,2,..,,
or if X = C,(4) is a space of systems {u,(0), ..., %,(0)} = u(o) of func-

tions continuous on a self-compact subset A of an n-dimensional

Euclidean space &", with the norm [u(‘)|| = max max |ux(c)|, then
oced 1<k<y

we can similarly obtain theorems on uniqueness and successive approx-
imations for the system of integro-differential equations of the form

Pugx y N
‘gw,a;//’ a)= J K,(a;, Y, 0, & u(, Yy, E)y .y W, Y, &), t amy E); e

oulz, ya_é)- ou(x, y’_ﬂ . 3“;:(-77,_2’ 5)) At s
’ ’

secy aw 3y y seey ay -

. Finally, applying here the method contained in paper [3] we can,
on the basis of Theorems 1 and 2, formulate a statement on the con-
tinuous dependence of the solutions of equation (1) on the functions
f, g, ¢ and .
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