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On some functional equations

by G. MAJCHER (Krakéow)

§ 1. Introduction. Let us consider the following system of p
functional equations

(1) pi(2) = G{(.’D, D (x), Plfu(2)], Plfa\2)], ..., ¢[fQ(w)]) , t=1,2,..,p,

with p unknown functions ®(x) = (¢,(2), ps(2), ..., pp(#)). The functions
z = fo(®), [(®), ..., fo(x) and Gi(z, Y), where

Y = (Yioy Y209 ooy Y205 Y1uy Yous voos Ypry o3 Yags Yogqy ooey Ypa)

are known.
For p =1 we obtain one equation of the form

(2) p(r) = G(a"y p(2), pl/(@)], p[fo(®)], ..., (p[fq((l})])

(we omit the index 7 = 1).

This equation has been dealt with by M. Bajraktarevié ([1]) and
by B. Choczewski ([2]), but on the right side of the equation a function
@(x) has not appeared. J. Kordylewski and M. Kueczma have also ana-
lysed equation (2), in the implicit form, with regard to ¢(z) ([6]). The
present paper is an attempt to obtain a solution of system (1) by using
weaker assumptions about fr(z) than in [2] and [6].

With certain assumptions, the existence of a solution of the system (1)
results from Schauder’s fixed-point-theorem (§ 2). In § 3 we prove that
under suitable assumptions system (1) has exactly one solution which
is continuous. We obtain it by successive approximations. § 4 gives
several examples. The solutions obtained are applied to the solution
of a generalized problem of Goursat ([9]). § 5 deals with a linear func-
tional equation for which a uniqueness theorem has been given for a solu-
tion in a set of functions of class C". § 5 was written on the suggestion
of dr M. Kuczma, who encouraged me to investigate also the solutions
of class C'. I take this opportunity to thank him cordially for his kind
interest in my work and his valuable remarks,
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§ 2. Existence of a solution of system (1). We assume that:

(H,) The functions fe(z), k =1,2, ..., q, are defined and continuous
in the closed interval {a,b>, b > a.

(H,) a <fi(x) <b for ze{a, b>,k—12 y q-
(Hy) The functions Gi(z, Y), = (veey Yijy ...) (see §1) are defined
and continuous in a [p(q +1)-|—1]-dimensional region V:

V: {a <o <b, |lyyl < R},

the constant R >0, +=1,2,..,p,j=0,1,2,..,4q.

(H) |Gi(z, Y)|< R for 1=1,2,..,p, (#,Y)eV.

(H;) There exist functions n = wi(€), ¢ =1,2, ..., p, continuous and
strictly increasing in the interval {0, b—a), for which w:(0) = 0, such that

|Gi(@y, T)— G2z, T)| < wi(|2,—y])

fa¥)

for every @, x,e<a,b> and Y and Y fulfilling the inequalities:

195l < B, |Jul <B, [Ju—7ul < wi(lfs@)—Fi(w)),
1=1,2,..,p,§=0,1,2, ey q.

THEOREM 1. If the assumptions (H,)-(H;) are fulfilled, then system (1)
possesses a solution D(x) continuous in <{a, bd.

Proof. Theorem 1 comes out from the fixed-point-theorem of
Schauder ([10]).

Let us consider the space E, the points of which are the systems
& (x) = (pa(@), @a(@), ..., gp(x)) of p functions continuous in <a,b). We
define the sum of its two points, and the product of a point by a number
as we usually do with vectors. We introduce in E the metric

(3) 0(®,P) = Z sup [¢s(2) — ()]

i=1

~

where @ = (@1, @3, ..., 9p) and @ = (&, @, ..., §») belong to E. Now

D
Il = o(®, 6) = ), sup lpu()] ,
i=1 <a. b

where 0 = (0,0, ..., 0). Of course o(9, P) = IIQ—@][. It is easy to prove
that E is complete and hence it is a Banach space.
Let us take the convex set T C E of points @, for which

lpz)) <R, zela,bd,

lpe(®1) — e ®a)| < wil|zy— 235]), Yy, Tpela, by, t=1,2,.., ?-

(4)
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The constant R is the same as in assumptions (H,) and (H,). Now we
consider the operation

(8) wi=x) = A(‘Pl(w)) = Gy ((6, b (z), Pf(2)], --., (D[fa("n)])r 1=1,2,..,p
applied to the functions of T. '

1t follows from assumptions (H,) and (H;) that if @ ¢ T then A (D)
= (A(p)), A(@s), ..., A(pp)) € T. Besides, operation (5) is continuous and
the set A(T) is compact. This last property results from a well-known
theorem of Arzela. Thanks to (H,), the functions y; = A (@) are equi-
bounded and thanks to (H,), they are also equicontinuous. In fact, let
us take 0 < ¢ < minwi(b—a) and two points #,x, € <{a,b). Then for

7
t=1,2,..,p and for every ®eT

i) — pi(@,)| = | Alps(z)) — Alpi(z))]
=|6i(z, B (@), BLy(@)], ..., DLfo(2)]) —
—Gi(Tg, D (), PLf1(T6)], ooy Plfo(2)])]
Swillr—z|) < &,
if |o—my| < d(e) = miinwi_l(s).

Hence and on account of the theorem of Schauder cited above ope-
ration (5) has a fixed point in 7, ie. ¢; = A(py), for i =1,2,..,p,
which proves Theorem 1.

§ 3. Uniqueness of the solution of system (1). In this section
we make the assumptions (H,)-(H,) and

(Hg) There exist constant numbers Ky >0, 1,j=1,2,..,p,
k=0,1,2,..,q, such that for i =1,2,..,p and for every two po.nts
(z,Y), (w, Y) of the set V

4

¥4 q
(6) |Gi(z, X)— Gi(w, Y)| < Kol yme—9nl ,
=1 k=

[}

where, if we put

we assume that the numbers K; fulfil the inequality
D
(7) D Ei<1.
i—1

Now we can prove the following
THEOREM 2. If the assumptions (H,)-(H,) and (H,) are fulfilled, then
system (1) has a wunmique solution D(x) such that the functions @ix),

i=1,2,..,p, are continuous in the interval <a,b) and satisfy the in-
equalities |piz)] < R in <{a,bd.
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Proof. We consider the space E the same as in the proof of Theo-
rem 1. Suppose we are given, in E, the set T, of systems of p functions
@i(7), (@), ..., pp(x) continuous in (a, b> and satisfying in this interval
the inequalities |pi(z)] < R, ¢ =1, 2, ..., p. Operation (5) transforms T,
into itself; moreover, for every two arbitrary points @ and @ of T,
we have on account of (5), (3) and (H,)

o(4(P), A(B)) = 2 sup |4 () — A @)

= 25‘31; |Gi(w, D(a), OLf1(2)], .., PLfe()]) —
~@i(z, B(2), BLHi(@)], ..., Blfg(a)])]

»_ P
<Y (Z Ko sup (o)~ 7s(o)]
< (._p Rl o(®, ®).

Consequently, according to the theorem of Banach-Cacciopoli, the
operation A (g:) has a unique fixed point in 7,. This proves Theorem 2.

Remark 1. We receive the solution of system (1) by the method
of successive approximations. This solution is also given by formula (8)

(8) wia) = o + 2, ol (o)~ (@),
where qa?”(a;) are arbitrary functions continuous in {a, b), and such that
(@) < B,
9" @) = Gilw, Pa(@), Pal}1(@)], ., Dalfo(@)])
n=1,2,3,..,t=1,2,..,p, vela, b,
Bu(x) = (917(@), g2(@), --ry 95 (@)} -
Remark 2. Let V, be a set of the points (z, ¥) such that
V,: {a <@ <b, yy arbitrary}, +=1,2,..,p,9=0,1,2,..,q9.

Let us denote by (Hj) and (Hs) the assumptions which we obtain by
replacing in (H;) and in (Hg) the set V by the set V,.

We now have the following

THEOREM 3. If the assumptions (H,), (H,), (Ha) and (Hg) are fulfilled,
then system (1) possesses a unique solution D(x) continuous in <{a, b).
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It is so, because the inequality

P
o(4(®), 4(®) < (D ki) e(@, )

=1

is now true in the whole space E, i.e. for every two points @ and & of
this space.

Remark 3. In Theorem 3 we can replace assumption (Hg) by the
following one:

Hg') There exist constant numbers Ly >0, 1,j =1, 2, ..., p, such that
for i =1,2,...,p and for every two poinis ®(x) and D (x) of the space E
conditions (6') are fulfilled:

|G (2, D(@), BLNr(@)], ., DPlfel@)]) — Ge(w, B (@), Bf ()], -.., Blie(@)])

< D Ly sup |3 (o) — s (@)1

where for 1 =1,2,..,p,

[ /]
(1) 0< D Ly<L<1.
t=1
L is a positive number, 0 <L < 1.
Remark 4. Theorems 1-3 are true for the system of equations

pi(x) = Gi(z, P(2), Pfu(@)], Plfua(®)], ..., Plfu(@))),
t=1,2,..,p,

where the functions fy, ¢=1,2,..,p, j=1,2,...,q, are defined and
continuous in {a,b) and, moreover, if a < fi;(x) < b, for z € <a, b).

Remark 5. It sometimes happens that the assumptions of Theo-
rem 2 or 3 are not fulfilled in the whole interval {(a, >, but only in an
interval <a, f)C <a,b>. In this case Theorems 2 and 3 give exactly
one solution @(z) of system (1) continuous in {a, ). Under the supple-
mentary assumptions &(x) can be uniquely extended to the whole (a, b)
in such a manner that it will satisfy system (1) and be continuous in
{a,b) (for p =1, see [6], [6], and [2], lemma, 2).

§ 4. Examples. Theorem 2 easily gives a solution of the following
equation (if the assumptions of Theorem 2 are fulfilled):

(9) p(z) = G(d;', ¢ (2), o/ (®)], q)[](z(w)]’ ey ‘P[jq(w)]) ’
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where f*(#) denotes the kth iteration of the function f(z), i.e.
o) = =,
@) = f{ff@), k=0,1,2,..

(see J. Kordylewski [5]).
Let us take, in particular, a linear equation of the order g,

(11) (o) —Ay(@)p[f (@)] — A@) @[ ()]~ ... —Ag(@)p[[*(x)] = F(z),
treated in some particular cases by J. Kordylewski and M. Kuczma ([7]).
We have for it the

THEOREM 4. If the functions Ay4(z), 1 = 1,2, ..., q, f(x) and F(x) are
defined and continuous in the interval {a,bd>, f(x) e {a, b), if moreover.
Aglz) # 0 in {a, b) and if there exists a number L, 0 < L < 1, such that

(10)

q
(12) Dldse) <L<1, for zela,b),
i=1

then equation (11) possesses exactly one solution continuous in <a,bd>.
This solution is given by the formula

(13) o(®) = F(z) + Z (@) P (2)],
where "
(13,) }-o =4, ’

Ay = A(f") An-1 +A2(]m—l);~n—2 + oo+ Aa(f) g+ Ania for n<gq,
A"V =1+ A" Nz b o AL N Aeg,  for m>gq

(in order to simplify we omit z).
This theorem follows from Theorem 3 and from Remark 3. We obtain

a solution of form (13), (13’) from formula (8), (8’) after an elementary
modification.

In particular, for ¢ = 2 ([9]) we have the equation of the second order

¢ (@) —Ay(2)p[f ()] —As(w) p[*()] = F (x)

and the solution in form (13) in which

Ao(z) = Ay(2),
M(z) = A\[f (2)] A(®) +Ao() ,
An() = A\[f"(@)] An—1() + A[f" T (®)] An—o(w), fOr n>2.

At last, for ¢ =1, equation (11) will be of the first order, namely
¢(z)—A(z)p[f (@)] = F(x),
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and in the solution (13)

Ao(z) = A(2),
In(®) = A[f"(@)] An-a(®), for n>1.

In this last example the solution can be represented in the form

o(z) = F(w)+2(”A[f NFI" ™ (@)], @ea,b).

§ 5. Solution of class (" of a linear functional equation.
For the sake of simplicity, we do not deal in this section with the
system but only with one linear functional equation of the form

q
(14) p(@)— Y Ad@)plfd@)] = F(z), @ e<a,b).

i=1
In further considerations we assume A4, # 0 in <a, d>. As®), fi{x) and
F(x) denote the known functions and ¢(z) is the function to be found.
We profit once more by the above-mentioned theorem of Banach-
Cacciopoli and prove that with certain assumptions equation (14) has
exactly one solution of class €7, 1 <r < oo, in the interval <a, b).
M. Kueczma has dealt with this problem in the case of ¢ =1 ([8]) ().
However, his results differ (also for ¢ = 1) from ours here because we
make different assumptions from those in [8].
Let us write

q
(15) H(z) = D Ada)glfu(@)] +F (),
i=1
and assume that
(H;) The functions A;(z), fi(x), for 1 =1,2,...,¢q, and the function
F(x) are of class C" in <a,b), 1 <7r < oo,
(Hg) fe(a) =a, for 1 =1,2,..,4q.
LEMMA 1. (See an analogous lemma in [8]). If (H,) and (H,;) are

fulfilled and the function @(z) is of class C" in <{a,bd>, then we have for
s§=1,2,..,r,

&’H ()
dr®

- 2 s Eeel, 37 Sy o) dolfiel | TP )

j=0 i=1

(16)

where Wep(x) are functions of the class O™, r—s <m <r—1 in {a,b).

(*) For the non-linear equation, see [3].

) % denotes here T tu)

W j= 1,2,...,8.

’
4= fi(z)
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We easily obtain formula (16) from (15).
It follows from the assumptions of Lemma 1 that there exist two
numbers M >0 and K > 0 such that in {a, bd)

q
2, [Ad@) i) < M

(7)
D |\ Welw)l <K, for j=0,1,..,7r—1.

i=1
In the sequel we make the following assumptions:
(Hy) If b—a #1 (b >a), then
M+Eb—a)[1—(b—a)]:[1—(b—a)] <a<1.
But if b—a =1, then
M+Kr<a<l, where 0<a<l.

(Hyo) The system of equations

q
g = [ Z A(@)| @ +F (a),
(18) =

8—1

ay = (Z Ay(@)If(a))) ey TZ (Z Wonta) o + dsp(a)

s=1,2,..,7r

with unknown numbers ay, ay, ..., ar, has solutions (one or more).

THEOREM 5. Let (H,) and (H,;)-(H,,) be fulfilled. Then for every system
of values ay, ay, ..., ar, fulfilling (18) there exists a unique funclion @(z)
of class C" in <{a,b) satisfying equation (14) and the conditions

d’p(a)

(19) Cdw

=0, §$=0,1,..,7

Proof. We define R as the space of all functions ¢(x) that are of
class C" in <a,bd> and fulfil conditions (19). We introduce in K the
metric

do(z) do)
dxr dzr |’

Q(‘Pv 6’) = 8up
{a,b)
Now we have

do

llell = elp, 0) = sup p
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From Taylor’s formula, we can easily get the inequality

dy

do dg e
der dar

—r_Zr < (b— r—f
i aw| <09 sap

(20) sup
{a,t>

’ for ]= 0,1,...,7‘—-1,

valid for any two ¢, @ belonging to R. Hence it follows that R is com-
plete. The operation

A(p) = D Ai(@)olfs(@)] +F ()
i=1

(which leaves numbers a; unchanged) maps KR into itself. Moreover, we
have for every two functions ¢(z), @¢(z) of R

dTAlp) TAG
dxr dxr

e(4(p), A(p)) = sup
(a,b

Fpljs@)] _ dli@)]
dxr dar

-+

< sup {;’ 4@ i)

+ E Zq | Wrie(x)]

dolfi(@)])  dli(2)]
dx!

|

— = da!
q" - . _
< sup [(; | A«(w)] If%(w)l') sup d;’aﬁrw) _d'gagrm) i
=l Do) dpx)|]C)
-]—g;(;lWrﬂ(w)]) sup | =~ e ] '

Using inequality (20) and hypothesis (H,), we obtain hence

de d _
-d%_ﬁ < ao(p, @),

o(d (), A(p)) < [M +K S (b— a)""] sup

{a,b)

which proves Theorem 5, on account of the theorem of Banach-
Cacciopoli.

Here we can also make a remark analogous to Remark 5 in § 3,
(see [6] and [4]).

() About the meaning of

Folfi(z)]
— g See footnote ().
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