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1.1. Definitions, Let J'a, be a given infinite series and let {s,}
be the sequence of partial sums. Then the series >'a, is said to be sum-
mable |A| if F(z) = D aso™ is convergent for 0 <z <1 and F(x) is of
bounded variation in (0,1) (see [11]). ‘

Let su denote the nth Cesiro mean of order a (a> —1) of the se-
quence {s,} and &, = 84. The series D'a, is said to be summable |C, al,
if the sequence {s,} is of bounded variation, that is, if

T a
Let {ps} be a sequence of constants, real or complex, and let us write

Py =py+P+ed+Pn;, Poa=p,=

(see [3] and [5]).
We define the sequence {f{s} of Norlund means by means of the
transformation

[ n
iy, 1
=3 ﬁpn-,s,—ﬁ'zo’m-.a, (Py 2 0).

The series J a, is said to be absolutely summable (N, pn), or summable
|V, pa|, if the sequence {t,} is of bounded variation (see [6]).
1.2, We write 7 = [1/t], where [6] denotes the greatest integer in 6.
For any sequence {Uy}, we write

AUﬂ= Un— U'IH'l’ AEUn=AUn'—'AUn+1.

Let f(t) be a periodic function with period 2= and integrable (L)
over (— =, ). Without loss of generality we can take the constant term
of the Fourier series to be zero. Then we have

=]

(1.2.1) ft)~ Z(aﬁcosm+b,,sinnt) = ZA,.(t)

=l fimal
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and we write
(1.2.2) p(t) = (@ +1) +(v—1)—2f(2)} .

We use the following notations:

2. a(1) = ey “‘”) svt
(1.2.3) (#) Zp ( 2 cogs

p=0

P.
1-2-4 ’ » t) = n— '_n _ "ﬂ) ]
( ) w(t) ”-20; Pu—u (Pn Dr—s cos ut ,
(1.2.5) E ' Dy (P n_ P "") A,CO8%t .

v=0

1.3, Generalizing a number of previous theorems due to Pra-
sad ([10]), Tzumi and Kawata ([4]) and Cheng ([1]), Pati proved in 1954
the following theorem concerning absolute Cesaro summability factors
of Fourier series.

THEOREM A (8ee [7]) (V). If {As} s a convex sequence such thai Z‘ Ny
i8 convergent and '

I
(1.3.1) [lo(w)|du=o0@t), as 150,
0

then 3 AnAn(x) is summable |C, a| for every a> 1.

The purpose of the present paper is to obtain a result similar to
that of Theorem A for absolute Nérlund summability factors of Fourier
series.

2.1. We establish the following theorem:

TEEOREM. Let {x} be a sequence such that Ady >0 and the series
D 12, is convergent and let {p,) be a positive monotonic increasing sequence
such that

; kol
(i) A(%) =01,

(! A more general form of Theorem A is contained in a later theorem of Pati
and Sinha ([9]), where the-condition of the convexity of A, is dispensed with and
only ‘di, = 0’ is agsumed.

(*) It has been observed by Pati (see Pati [8]) that o(l) in (1.3.1) can be re-
placed by O(1).
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and

(i) 2—log'n < .
T

Then, if

‘
fl(p(u)ldu =0(), a8 -0,
0

D MAn(2) 48 summable | N, pal.

2.2, We require the following lemmas:
LEMMA 1. Let t, be the n-th Novlund mean of the series > Un. Then

1 n—-1 -Pn-v-l — -Pn—-l
2 n v( p” :p”h’ )Uv—' _'P (tn_tn—l) .

0—0 »

LEMMA 2. Let 0 <t < 2m, and

%

Sn(t) = an_, (% —_ in_') ,COS'Pt .

n—
y=0 v

Then

8u(t) = { O(nPy) , for  0<t<<1n;
BT OlnpatTy,  for  im<t<w

Proof. For 0 <t < 1/n,

Sa(t) = \2' Du—»

p =0

= O(Py/ps) + 0 (nPs) = O(nPy) .

Pn

: .|cosvt|} = ( ZP”") +O(ZP"—)

p=0

For 1/n < t < =, applying Abel’s transformation,

n—1

P, \
Sn(t) =20:A(— )an 4 COS pub + (——n——)an »COS ¥
r= ue=
g
( ”'”') Pn MAX cos ;ct“«{—
0y <y

p=0
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m
i
cof vt

2 o)

(by Abel’s Lemma)

Pn MAX
osmsn

+of|G- 5

= O(p,,zn‘tﬂl) +0(npat™") = O(npat™") .

=0
LevmA 3. Let

- Py P, )
() = g | — — A
(1) 21’ ,.( P cos ut .

pe=0

Then '
8p(l) = { 0 (+*pn) , for  0<t<<1/n;
T 0(vpatt),  for  ln<it<m

Proof. By Abel’s transformation,

Sny(t) = 2 ( p:::) E Dp—x COB Tt + (— — "") 2 Pn—nCOB UL .

p=0

Using Abel’s Lemma, we¢ have

7

r—1 B
P,_
8,,(1) = e
0 =0f Zlal-5z ez | oo+
B Pooy P ' |
-I-Ol ( oy T Tns) Pn 02X ,g.," Cos ut }
=1
0( D) pun)+00zm) = 06ip)
Ja==0

and for 1/n <t < =, by Abel’'s Lemma,

) 2 cos kt
k=

P,_ P,
0 +n  Ltn-1 — n -)
T {‘(Pn Pn—-1 + Pr—»

Pn MaAX
o<u' <

.

Pn max
0y <

Snlt) = {

pe=0

v
Zcosm'}

H#=0

r—1

=0 (p,.Zt") + 0 (vpat™) = O(vpat™) .

pw0
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LemmA 4. Let
Ka(t) = ——Z ,,_,( "") Ay,convt .
y=0 ’
Then s
0(19:211 v’AZ\)+O(n}.,.),- for 0<t<1/ng
Eut) = "~ |

n—1

0(% 'IZvAA,)+O(1,"p“t‘1), for In<i<n

p=l

Proof. By Abel’s transformation,

n—1 n—1

Hat) = 3 D) AinSult) + 52 8u) = 0 (B2 D 2a1,) +-0(n)

!==0 pual

for 0 <t < 1/n.
-For 1/n <t < w, we have

n—1
.pﬂ -1 }m )
En(t) = O |- = NPnt~
() =0 Z 8347") 40 (B np
n—1
Pn 1 ‘nPu 41
O(P“t Zmz,)Jro( 1 )
LeMMA 5. If {4s} is a monotonic non-increasing sequence such that

2 n— Uy < o0,
then -

2 log(n+1)A44s < oo.
1

Proof. By Abel’s transformation,

m m-—1 n m
D Adglogn+1 = D' Alogn+1 ) Ak +log(m+1) D An

n=1 ne=1 pml fml
m—1
= 1,1082 — Anyrlog(m +1) — D) Alogn+1inys .
Ne=l

But, as n—>co,

Alog(n+1) = o(ﬁ) and  Jalogn = 0(1).
Hence,

D) Adlog(n4+1) = 0(1), as m->oo0.

=1
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This proof is somewhat more general than the original lemma of Pati
(see Pati [7], Lemma 3; see also Daniel [2]) where Dr. Pati suggested this.

3. Proof of the Theorem. By’ virtue of Lemma 1, it is sufficient

to prove that
ZP” flqo (0] | En)]d < oo

n=-2

Pa k
7 | lool Kt
1n

*2 o f lp (8)] | Ka(t)]| -+ j

= ZH—Z‘,, say.
Then, by hypothesis,

{I‘P(t )| [ K a ()] dt

J/n

n—-1 -]
zl-o(Zp,:‘_ R D) i) +0( ) 2 un)
y=1 n=2 -
n—1 0o -] oo
= O(Zn-szvzm)+o(2%)= O(va, Z 'n-“) +0(1)
n=2 vl p=1 A=yl
= O( A2 ) 4+0(1)=0(1).
And
-] -1
_ ol N1 Pn_DPn , le(t)]
ZE—O(AJPn_j.PnZl'ALf dt
=2 y=]1 1n
N n_Dn r lp(t)]
+0( P,,_IP,.M"I O gy
7=2 ‘ 1n
n~1
= 0( logz_'lg.z vAl,)-i—O( A—”logn)
n=2 ym] Ra2
= O(ZMA, 2 fn,-?log'n,) +0(1)
y=1 n=y|1
‘%
= O(Z log(v—l—l)/_ll,) 4+0(1) = 0(1),
by Lemma 4. =

This completes the proof of the theorem.
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In conclusion, I wish to express my sincerest thanks to Dr. T. Pati
for his kind supervision during the preparation of this paper and to the
Council of Scientific and Industrial Research of Indla. for their kind
financial supports.
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