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On cosine and sine functional equations

by Pr. KANNAPPAN (Annamalai Nagar)

Introduction. In this paper, the functional equations

(A) flay)+ flxy=) = 2f(@)f(y)
and
(C) fley)f(ey~) = f(z)*—f(y)?,

where f is a complex-valued function on an arbitrary group @, are con-
sidered. Let ¢ be a homomorphism of G into the multiplicative group
of the complex numbers, K. Then, it is evident that

and ‘
(D) fla) = LD _I2)

are solutions of (A) and (C) respectively, where g*(x) = g(z)™".

1. First we shall consider the equation (A) and prove the following

THEOREM 1. Let I be any arbitrary index set. Well order I. Let {G,},
(a e I) be a family of groups such that for every a in I, each solution of (A)
on @, is of the form (B) and G, g Gy, a < B, a, B el. Then every solution
of (A) on G = G, a in I, is of the form (B), provided f(zyz) = f(xzy),
for all z,y,z in G.

Proof. Here we quote the following results, Lemma 1 and Lemma 2
(which are Lemma 1 and Theorem 3 of [2]) without proof, which will be
used in the sequel.

LEMMA 1. Let @ be any group. Let f be a function on G with the proper-
ties that (1) f satisfies (A) on @, (2) f(x) assumes the values +1 only on G
and (3) f(zyz) = f(xzy), for all z,y,z in Q. Then f is of the form (B).

LEMMA 2. Let

gi(x) + gt(®) _ ga(®) + g2()
2 2 '
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for all z in G, where g, and g, are homomorphisms of @ into K. Then either
92 =g, 07 g2 = g.

The proof of the theorem is based on transfinite induction. Let
G=1JG,, ael. Let f: G->K be a solution of (A). Now we will prove
that f is of the form (B). Let f, = f|G. (f restricted to G,) assume the
values +1, for every a in I. Then evidently f = +1 on G and the proof
follows by Lemma 1. Without loss of generality we can assume that

(1L.1) flGa=f.# +1, for each ¢ in I.

Otherwise there is a least index § ¢ I such that fz # +1. Then G = Gg v
v G4y v ... Then we can consider the index set J = {#, §+1, ...} and
we have f, # +1, yeJ. Let a <f, a,f eI. By hypothesis, there are
homomorphisms g¢,: G, K (y = a, ) such that

- »
(1.2) g, =038

Since a < § by Lemma 2, it follows that either gs or gf is the extension
of g,. If both are extensions of g,, we would have ¢, = +1 and so f, = +1,
a contradiction to (1.1). We call the unique extension of g, to G5 as g;.
Now, we shall apply the transfinite induction. Let a e I be such that
the above result is true for the initial segment 8(a), that is, for every f
and y < a (we may take f < y < a), ¢g5: Gs—K a homomorphism satis-
fying (B) on G; has a unique extension g, to G,, also a homomorphism
on @G, into K, satisfying (1.2) on G,. Now, we will prove that there is
a unique extension to G,; that is, there is a g, on G, such that g, is the
extension of g, f < a. Let H =) Gy, B < a. Let us define g: H—>K,
as follows:

(1.3) g(@) =g(2), xeG\Gy, f<y<a.

Now, g is well defined and further g is a homomorphism on H. In fact,
let ,y € H. Then there are 8, y < a such that z e G5\G,, u < f < a and
yeG\G,, v<<y <a. Let $<y. Then zy e G\G,, v < y < a. By using
the hypothesis and (1.3), we obtain

9(zy) = g,(vy) = 9,(2)9,(y) = ga(@) 9,(y) = g(@)g(y) .
Therefore, ¢ is a homomorphism on H. Further

(1.4) fIH = %9' :

Now consider @,. By hypothesis, there is a ¢g,: G,—~K, a homomorphism
such that

(1.5) fo=t28
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So,

2 2

flE =ty 90"

Hence, by Lemma 2, either g, or g¥ restricted to H gives g. Otherwise,
we would have, g5 = 41, for every § < a, a contradiction to (1.1). We
shall call the unique extension of ¢ to G, as ¢,. Then ¢, is the required
unique extension to @,, satisfying (1.5). Thus we have g, on @G, is such
that ¢.|Gs = g5, f < a, ael. Now, let us define h: G—>K, as follows:

(1.6) h(z) = go(z), Where 2eG\Gs, a<p,a,fel.

Then & is well defined. Further, proceeding as above we can show that h
is a homomorphism on G such that f = (h+ h*)/2. This completes the
proof of the theorem.

From Theorem 1, we can easily deduce the following two corollaries
using the following Lemma 3 (which is Theorem (2.5) of [1]).

LEMMA 3. Let G be any cyclic group finite or infinite. Then every
complex valued function on G which is also a solution of (A) has the form (B).

CoROLLARY 1. Consider the additive group of rationals . Let
Gn = {k|n!: ke Z}, where Z denotes the set of integers and n any positive
integer greater than or equal to 1. Then evidently Q@ =) Gz, n > 1. G, 18
a cyclic group for every n and G, g G, for n < m. Also it follows by Lemma 3
that every solution of (A) on G, for every n, has the form (B). Hence it follows
from Theorem 1 that every solution of (A) on Q has the form (B).

CoROLLARY 2. Consider the multiplicative group Z(p>™), p a prime.
Then

Z(p>)=UZ((p"), for n=0,1,2,..

where Z(p™) = {exp(2kni/p"): k € Z}, Z being the set of inlegers. Z(p™) is
a cyclic group for every n and Z(p*) g Z(p™), for n < m. Therefore by
Lemma 3, it follows that every solution of (A) on Z(p*) for every m, has the

form (B). Hence, again using Theorem 1, we see that every solution of (A)
on Z(p>®) has the form (B).

2. Now we take up the equation (C) and prove the following

THEOREM 2. Let G be a cyclic group. Let f be a complex-valued function
on @ satisfying (C) with the properties that (1) f is not identically zero and (2)
f is of the form (D). Then we assert that there is one and only one homo-
morphism g of G into K satisfying (D).

Proof. Suppose that there are two homomorphisms g¢;: G >K
(¢ =1, 2) such that

(2.1) f(z) = gf(fv)—2 g9t (») ’

for all # in G.
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Now (2.1) gives that

oi(z)— g1(z) = g:(x)— g2(2) ,
for all z in G, equivalently,

9:\(x)— gx(x)— gt (z) + g2(z) = 0,
hence

_ gi(w)—go(z) _
o) o)+ LD=0E) _

b
which is the same as

[9.(2)— gx(x)][g:(2) g,(x) +1] = O .

From the above we conclude that either for each z,

(2.2) 9:(2) = gi(x) or gyx) = —gi(2).
Let G be generated by a. From (2.2), we would have either
(2.3) g.(a) = g,(a)

which in turn implies that ¢, is the same as g,, since @ is a cyclic group
and there is nothing to prove, or

(2.4) g9x(a) = —g¥(a) .

If for every n in Z, g,(a*) = — g7(a™), then g, cannot be a homomorphism.
So, this case cannot happen. The only other possibility is that with (2.4),
for some n in Z, we have

(2.5) g:(a”) = gy(a") .
Let n, be the smallest positive integer satisfying (2.5). That is,

‘—gf(a") sy M <My,
2.6 o(a”) = |
(26) fala”) \ gi(a®), n=mn,.

Now let us consider g,(a™+*!). From (2.2) we distinguish two cases according
as g,(a™t!) = g,(am*1) or g,(a™*!) = —gf(a™+1), First we consider the
former case. Now,

go(a™+) = gy(am™)g,(a) = gi(a™)[ — g¥(a)] = — gi(a™~?) .
Hence

gi(amtt) = — g (a™-1),
that is,

gi(a™1)[g(a?)+1] = 0.
Now g,(am—') = 0 implies g,(a) = 0, which cannot be, leaving the other
possibility that ¢(a®) = g,(a)* = —1. So, gya)= 4+¢ Now ga)=1
implies —gf(a) = —1/¢ = 3. Hence g,(a) = —¢gt(a) = g,(a), whence g, is
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identically equal to g,. Similarly we can establish in the case where
g.(a) = —14, that g, is the same as g¢,.

Finally, we are left with the remaining case, g,(a™+!) = — gf(am™*1).
But, we have

galam+t) = gofam=1)go(a?) = [~ gi(am—)][~ gi(a?)] = gi(am*)
provided n, > 3.

So, we have, gf(a™+t!) = —gf(a™*!). This means gf(a) = 0, which
is false. Hence this possibility cannot occur. If n, = 2, (2.6) becomes
(2.7) g(a) = —gi(a) and  gy(a®) = gi(a?) .

In case

gx(a®) = —gf(’a.“) ’
we have

9:(a®) = g(a?) gx(a) = gi(a®)[— g1(a)] = — g,(a) = —gi(a®) .

So, g,(a*) = 1, giving g,(a) = +1, 4. ¢g;(a) = +1, implies that f is a zero
function, which contradicts the hypothesis (1). The equality g,(a) = 41
as above shows that g, and g, coincide on G. Lastly we may have g,(a?)
= ¢,(a®). From (2.7), we have

g:(a%) = g:(a®) = g,(a%) gi(a) = gx(a®) gi(a) .

Thus g,(a) = g,(a). Hence g, and g, are one and the same on G. Thus we
have established the uniqueness of the homomorphism ¢, when ¢ satis-
fies (D). Hence the proof of the theorem is complete.

I wish to express my sincere thanks to Professor Edwin Hewitt for
his guidance during the preparation of this paper.
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