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1. Preliminaries. Let X be a linear space over a field # of scalars.
In our. further consideration we shall admit either & = R or & = C.
Let L(X) be the set of all linear operators A such that the domain of A
(denoted by domA) is a linear subset of X and AX < X. In particular,
we write: Ly(X) = {4 e L(X): domA = X}. Let R(X) be the set of all
right invertible operators belonging to L(X). For a given D e R(X) we
denote by Z; = {R,},.r the set of all right inverses of D. We shall assume
that domE, = X for y € I'. Here and in the sequel we shall assume that
dimkerD > 0, i.e. D is right invertible but not left invertible. Any el-
ement of kerD is a constant for D.

By #p = {F,},.r we denote the set of all initial operators for D
(cf. [7]). By definition, ¥ is an initial operator for .D if is a projection
onto ker D such that FR = 0 for an R e #;,. This implies that F is an
initial operator if and only if there is an R € £, such that # = I — RD
on domUD.

One can also prove (cf. [7]) that any projection ¥ onto kerD is an
initial operator for D corresponding to a right inverse R = E,—FR,
and that the definition of R does not depend on the choice of the right
inverse E,.

We recall the Taylor—Gonicharov formula for right invertible oper-
ators. Let N e N and let {y,} = I" be arbitrarily fixed. Then the following
identity holds on the domain of DV:

N-1
(1.1) I-F,+ ) R,..R, F, D{R,..R, DV

k=1
In particular, if B, = R, F, = Ffork =0,1,..., N1, then we obtain
the Taylor formula:

’N-1

N-1
(1.2) I= 2 R*FD*4-R¥DY  on domD".

Ie=0
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For an arbitrary « € X the element R o (y € I') is a primitive element
for z. One can prove that the difference of primitive elements is a constant
(cf. [7]). Consider the operator: Fy;R,—F R, for arbitrarily fixed e, 8,
y € I'. This operator is independent of the choice of R and plays the role
of a definite integral for D. We can prove that

(1.3) F;R,—F,R, = F;R, (a,B,yel)
and that
(1.4) FyR,D = F;—F, (a,Bel).

The last equality implies that a definite integral of an element is equal
to the difference of initial values of a primitive element and that this
constant is independent of the choice of a primitive element.

Let A, B e L(X) be arbitrary operators such that both superposi-
tions AB and BA are well-defined. We shall write:

[4,B] = AB—BA.

Let X be a linear ring (an algebra) over &#. We shall admit the fol-
lowing convention:

(1.5) [4,2] = Az—xA for all zedomAd,

ie. [4,2]y = (Adx)y —xAy for all 2,y edomA.

Let X be a commutative algebra (i.e. a commutative linear ring)
over R and let D € R(X). X is said be a D-algebra if the following condi-
tion is satisfied:

(1.6) redomD and y edomD implies 2y edomD.

Here and in the sequel we shall assume that X is a D-algebra. Write:
1.7)  fo(z,y) = D(wy) —cp(eDy+-yDx) for all z,y edomD,
where :

(i) ep is a scalar dependent on D only;

(ii) fp: domDdomD — domD is a bilinear and symmetric mapping
dependent on D only, i.e.

(1.8) fo(y,®) = fp(x,y) for all z,y edomD.
Using the denotation (1.2) we can write:
1.9) D(zy) = ep(eDy+yDz)+fp(v,y) for z,y edomD.

The bilinear operator f, will be called a mon-Leibniz component.
Non-Leibniz components for power of D are determined by the following
recursion formula:

f@ =0, f9=fp, andfork=2,3,..,2,9cdomD*,
110)  fP(x,y) = (D) (D*'y)+ (D) (Dy)l+
+ SV @, D)+ GV (DR e, )14+ DF GV (=, 9)
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The proof is given in [16]. Similar formulae hold for a superposition
of right invertible operators. If p + 0 is an arbitrary real then ¢,;, = ¢p,
Jop = 2fp.

Other properties of non-Leibniz components and several examples
of D-algebras can be found also in [16].

2. Lagrange and Green formulae for polynomials in a right invertible
operators with operator coefficients. Here and in the sequel we shall
assume for D-algebras under consideration the denotation used in formula
(1.7). We also always assume that ¢, # 0 (cf. Example 2.8 in [16]).

THEOREM 2.1. Let X be a D-algebra. Write

N N
(2.1) QD) =D Q. D% Q*(D) = Y (—1)}Dkg,
k=0 k=0

where Qy, Q,, ..., Qy € L(dom DY), N =1 and Q, is an invertible operator
(or identity). Then for every x,y € domDV the following identity holds:

N
22)  2Q(D)y—yQ*(D)x = D' {(—1)"" G D*(y Q) —FE (@, )]+

k=0
+ [2Qr, — (@x#)1 D*y + [1 4 ( —1)*1(Q,2) D*y}.
Proof. Our assumptions imply that

N
2Q(D)y —yQ* (D)o = ) [2Q, D*y —y(—1)*D*Q,0]

k=0
N
= D' {(—1)*'[(Qu2) D*y + yD* (@) ]+ [#Q: D*y + ( —1)“(Q),2) D* y T}
k=0
N
= Y {(—1/"* " [D* (@) —f ) (@u, ¥) 1+ [2Qs — (@,2)1 D*y +
k=0

+ [+ (—=1)*)(Qs2) D*y} .

Formula (2.2) is the Lagrange formula for polynomials in D with
operator coefficients.

COROLLARY 2.1. Let X be a D-algebra and let Q(D) and Q™ (D) be
defined by formula (2.1). Then for all F,,Fye Fp, R, € Rp (a # ) and
for all x,y e dom DY the following identity holds:

(2.3) FyR,[2Q(D)y —y@* (D)«]

N-1

= ) (=1 N Fy—F,) D! (yQ;,.9) +

j=0

+ FpRo[ggm) (T, ¥)+ o) (@, Y)]y



286 D. Przeworska-Rolewicz

where
(24) oyl y) = ;’ {(—1Yep"fB (Qua,y) +

_ + [+ (=1 1(Qx2) D*y} +yQo,
(2.5)  hopy(®,¥) =§; [#Q; — (@x2)1D"y.

Proof. Formulae (1.4), (2.2), (2.4), (2.5) together imply that for
all F,, Fye Fp, R, e Rp, a # P and &,y € dom DV we have

FyR,[2Q(D)y —yQ™ (D)«]

N N
= FpRf —yQuz+ D) (—1)*" G [D*(y Qo)1+ D (—1)*+2ep*f ) (=, 9) +

ke=1 k=0

N N
+ ) (99— Q@)1 Dy +2(Qu2)y + ) [1+(—1)*1(Q,) D'y}

k=0 k=1
N-1 N
= FyR{ Y (=17 [ DI (yQ,,,0)] Y o5 f P (@, ) +
j=0 im0
N N »
+ ) 20, — (@)1 D*y + 3 [1+(—1*1(@2) D*y -+ y@ya}
k=0 k=1
N_l . .
= Y (1Y) Fy Ry DD (yQ;1.10)1 P Ro 90 (%, ¥) -+ houy (€, 9)]
i=0
N-1 '
= Y (—1) 9 (F; — F o) DY (9Q5,10) + Fs Ral[gowy (@, ¥) + o (@, 9)]
f=0
since fQ = 0.

Formula (2.3) is the Green formula for polynomials in D with operator
coefficients. Now we shall specify coefficients. Observe that bilinear
operators appearing in this formula map the space of constants into itself.

CoROLLARY 2.2. Suppose that all assumptions of Corollary 2.1 are
satisfied. If Q,, ..., @y are operators of multiplication by elements of X, i.e.

(26) Q. =a2, wherea,eX (k=0,1,...,N) for vxeX,
then

N N
QD)z = Y @Dz, Q+(D)z = D' (—1)*D*(a,)

k=0 k=0

for wEX, hQ(D)=0’
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where hyp) 8 defined by (2.5), and the Green formula is of the form
(2.7) FyR,[2Q(D)y —yQ* (D)x]

N-1
= D (—1) g9 (F; — F.) D (azy) + Fy Rogorm) (25 ¥)
=0
where
Jor) = Z{ 18 (apz,y)+ [1+(— 1] e, 2Dy} + ayry.

kﬂl

Indeed, by our definition for all z,y e dom DV

N
how) (z 2, (29 — (@, 2)1 D"y =2 [za, —a, 2] D'y = 0
k=0

k=0
and yQ,x = a,xy.

COROLLARY 2.3. Suppose that all assumptions of Corollary 2.1 are

satisfied. If the coefficients @, ..., QN commute with D: DQ, = @, D
(k =.0,1, ..., N), then

(2.8) QT (D) =Q(—D) =Q(D*), where D™ = —D.
Indeed, by our assumptions we have
N N
= D (—1)}D*Q, = ' Qu(—D)* = @(—D) = Q(D*).
k=0 k=0

COROLLARY 2.4. Suppose that all assumptions of Corollary 2.1 are
satisfied. If the coefficients of @ (D) are scalars, i.e. if Q, = q, I, where ¢, € R
(k =0,1,...,N), gy # 0, then

Q*(D) = Q(—D) = Q(D*);
for all z,vy e domD¥

o) (@ ¥) qu{ —1)¥ep*f§ (@, y)+ [1+(—1)*]aD*y} + gy,

houy (2, y) = 0,
and the Green formula is of the form
(2.9) FyR,[2Q(D)y —yQ(—D)x]

N-1

= ( —1)j01_)(j+1)gj(Fﬁ —F,) D (xy) +FyR,. 9oy (%, Y)-

i=0
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Indeed, since @,, ..., @5 commute with D, Corollary 2.3 implies that
Q* (D) = Q(— D). Moreover, we have

N
Jomy(@, ¥) = Y {(— 1V ep" fP(@e, )+ [1+(—1)*1geD* g} + go2y

k=l
N

= Y ¢ {(— 1" P (2, y)+ [1+( —1)*]aD*y + g2y}
k=1

since f{¥ are bilinear operators. We also find

N N
hoiny (%5 Y) =2 [#Q, — Q2] D*y =2 0 (¢ —x)D*y = 0.

k=0 k=0
Therefore the Green formula in our case is of the form (2.8).
COROLLARY 2.5. Suppese that all assumptions of Corollary 2.4 are

satisfied. Then the Green formula (2.9) can be written as follows:
(2.10) F,R,[2Q(D)y —yQ(—D)x]
= ¢p'(F—F,)[Q(—o0p' D) —(—1)Y g DV 1(wy) + F5 R, gow) (0, ¥)
Jor all 2,y € dom D¥, where gyp) is as in Corollary 2.4.
Indeed, formula (2.8) implies that for all z, y € dom DY

FgR,[2Q(D)y —yQ(—D)z]

N-1

=2 (—1)505(j+1)95(Fp—Fa)Dj(97?/)+-F,9Rago(b)(~”"7?l)
j=0
N-1
= GBl(Fﬂ_ 0)2 9.'5(—1)101_)ij(‘”3!)+FpRago(D)(a/‘;?I)
i=o0

= ¢p' (Fg—F,) [Q(—c,‘,lD)(:vy)—(H—l)NgNDN](wy)+FpRngQ(D)(w, Y).
If ¢, = 1, then formula (2.9) is of the form
(211)  FyR,[2Q(D)y —y@(— D)x]

= (Fp—F,)Q{—D)—(—1)Yqy DV (2y) + F4R.gory (%, ¥),
where

N
Iopy(@, ) = ) 6l — 1) (=, y)+[1+(—1)*12D*y} + oy -
Ja=l

COBOLLARY 2.6. Suppose that all assumptions of Corollary 2.1 are
satisfied. Let x, y be solutions of equations

(2.12) D)y =9, Q"(D)x =u,
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respectively, where u, v € X are given. Then

(213) FyR.(2v—yu)
N-1

= 2 (—1) epi+N(F, "Fa)Dj(?IQHv’”) +Fy R, [goum) (2, ¥) + hoy (2, ¥)].

3=0
The proof immediately follows from formula (2.3).

COROLLARY 2.7. Let X be a D-algebra. Let N be an arbitrarily fized
positive integer and let x,y € dom DY, Then the Lagrange formula for the
operator DV is of the form

(214) 2Dy —y(D)Nz = (1) 5V DY (ay) — (=, 9) +

4[4+ (-1)¥]aD"y, where D = —D
and the Green formula is of the form
(2.15)  F,R,[aDVy—y(D*)Vu] = (—1)¥+ 5" (F,—F,) DV (ay) +

+(=1)¥ep" P (@, 9) +[1+(—1)V]2DVy
where ¥,, Fpe Fp5,, R, € Ry, f # a.

Indeed, if we put in Theorem 2.1 and Corollary 2.1 @, = @, = ...
wee =@Qn_1 = 0, Qy = I then we obtain

QD) =DV, @*(D)=(-1¥D¥= (D")".
COROLLARY 2.8. Suppose that D,, Dye R(X), D = D,D, and X 1i8

a D-algebra. Then the Lagrange and Green formulae for the superposition
D = D,D, are of the form: for all x,y € domD

(216) «D,D,y—yDi Dy
= 051 01_7; {D; D, (2y) —Jp, (%, y) — D, fp, (%, y) +

+¢p, op, [(D1 %) (Dyy) + (D, @) (Dy )1},
(217)  FyR,(2D,D,y —yDy DY)

= Cp)p, (Fp—F.o)(2y) —p,p, FsRal{fp,(#, ¥)+ D, fp, (2, ¥)+
+¢p, ¢p, [(D12) (D, ) + (D, ) (D)1}
where we admit D = —D,, D} = —D,, D* = —D and
(2.18) F,R, = [FYRY+RPFOIRD,
FO, FH € #p,; R®, RY € Zp, (¢ =1,2) and B + a.

Indeed’ D+ = —.D;-.Df- = —(_D2)(_'Dl) - —D2D1 = —.D-
It is well known [8] that

Fy=FP+R{FOD, eFy, Fo=FP+ROFPD ey,
R, — RYED e &,

19 — Annales Polonici Mathematici XLII
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Hence
F,R, (FS’—}—R“)F(”D YROR® = [F“’R“)+R“)F(Z)]R")
F, F — F(l) F(1)+(R(1)F(2) R(")F'(IZ))DI.
Smce D+ = —D formulae (2.2) and (2.3) imply that for all =,
e domD

Dy —yDVz = :ch—l—me = ¢3'[D(zy) —fplz
FyRi(zDy—yD*x) = F;R, {c5' D(xy —fD }
= CDIFﬂR D(my) —CDIFﬁRafD ’ y

= ¢p (F | a)(wy)_ODlFﬁ-RafD( yY).
This implies the required formulae (2.16) and (2.17).

COROLLARY 2.9. Suppose that D,, D, e R(X), D = D{D}, p, geN,
are arbitrarily fixed and X is a D-algebra. Then we have

(219) ¢p =ch, ¢},

(2:20)  fp(@,9) = [ (=, y) +DLfE)N(=, y) +

‘ + ¢}, %, [(DPa)(Diy)+ (Diz)(D2y)]  for @,y edomD,
(2.21) Dt = (—1)y**D,

: ol g-1
(2.22) F, = Z Rk FO DR 4 (RMy» 2 (ROY FO Di DP
k=0 =0 o

| (y =aory=_§),
(2.23) R, = (ROPROY, FO,FYcsF,, R, R e, (i=1,2).
The Lagrange formula is of the form
zDy —yD* & = c¢p' [D(zy) —fp(a
The Green formula is of the form
(2.24)  F,R,(zDy—yD*a) = cp* (Fy—T,)(zy) — Fy B c5'f(z, y)
for z,y edomD.

The proof follows from Corollary 2.8, Theorem 2.1 and Taylor for-
mulae for operators D, and D, (cf. (1.2)). An immediate consequence is

COROLLARY 2.10. Let X, D, ¢y, fp, D*, F,, F,, R, be defined as in
Cordllary 2.9. Let

. J\; , N
= X' @uD*, @*(D) = D] (—1)“D*g,,
k=0 k=0

where Q;, € Ly(domDV) (k = 0,1,...,N) and Qy is invertible. Then the
Green formula (2.3) holds.
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CoroLLARY 2.11. Let X, D, ¢p, fp, D*, F,, F;, R, be defined as in
Corrollary 2.9 (with p = q = 1). Let

P(D).= D,D,+AD,+BD,+0, |
(2.25) - A, B, CeLy(X),.
P+(D) = D,D,—D,A—D,B+C.

Then the Green formula for oll x,y € domD is of the form
(2.26) FyR,[vP(D)y—yP*(D)x]
— 0565} (Fy— F,) (ay) -+ 5 (F) — FO) (y A) + 5} (FY — F®) (yBa) +
+FﬁRa{cB;éB; [fp,(#, )+ Dafp(@, )1+ [(D1#) (D2y) +(Dy) (Doy) 1+
+¢5,fp, (42, ¥)+ 5. fp,( Bz, y)+ [z, A1D, y+ [z, B] D,y +yCx — 20y},
where D = D,D,,\ and
F,=F)+RPFPD e Fp, = Fp,p, (¥ = aor y =}
R, = BORD e Ry = Rpp,, FO,FPeFp,RPeAp, (i=1,2).
Indeed, observe that for z, ¥y € dom.D we have
zP(D)y —yP* (D)o = #D, D,y —yD, D x+
+2AD,y—yD,Ax-+xBD,y —yD,Bx + 2Cy —yCx
= @Dy —yDx + (Az) D,y —yD,(Az)+ (Bw)(D,y) —yD,(Bx)+
+20y —yCz+[2, A1D1y + [z, B] Dy
¢p' [D(@, ¥)—f p (@, )1+ ¢p, [D1(y4w) —fp; (Az, y)]+
+ 5 [D,(yBx) —f, (Bz, y)1+ [2, A1 D,y + [&, B1D,y +yCx—aCy.

Further the proof is going in a similar way as in Corollaries 2.8 and 2.9.
ExAmMpLE 2.1. Suppose that X = 0(R), where

02
Q={ts): 0<t<a, 0<s<b}, D=—o,

t s
Ry={[ [, (Fa)t,s)=a(t, 0)+(0,s)—=z(0,0).
o 0

The operator D = D,D,, where D, = 2/0t, D; = 0/0s is right invertible,
F, is an initial operator for D corresponding to its right inverse R,. More-
over, F, is an initial operator induced by the classical Darboux problem
for the operator D. To have Green formulae for the operator

0* g

0
2108 —l—AE +B%+G, A,B,OE.X,

(2.27) P(D) =
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we have to find some more initial operators and right inverses for D and
to apply Corollary 2.10. Suppose then that we are given functions g, 2
€ C1[0, a] such that ¢'(t) >0, R'(?) >0 of 0<t<a, g(0) = h(0) =0,
g(a) = h(a) = b.

Consider the following operators defined for z e C*(R2)

t
(F.2)(t,8) = 2(g7(3),8)+ [ ailp, g(p))dp,
0~ 1(s)
(F22)(t, 5) = z(g7"(s), 8) —2 (g7 (8), 0) +-(t, 0),
¢
(Fs2)(t, 8) = @(g(s),8)+ [ ai(p, h(p)dp.
7 1)

All these operators are initial operators for .D because they are pro-
jections onto kerD. The operator F, is induced by the Cauchy problem
for D, the operator ¥, is induced by the Picard problem for D, the operator
F,qis induced by the generalized Cauchy problem for D (i.e. such a problem,
where we are given values (¢, g(t)) and (2, h(?)), cf. [7], [10]).

It is easy to verify that for all x € X we have

._1() ]
(F1Ry2) (1, 8) = — f [f w(p,qdq]dp— ) [f 2(p, 9)dg|dp,

g (s) ©
0~ Ys)

(FyRo2)(t, ) = f [pr,q)dq]dp.

Lt h(p)

(FsRo)(t, 8) = f [ f oo, gdalap— [ [ [ =(p, 9)dg]ap.

o1s) © o= la) ©

Using these last expressions we can derive 3 different Green formulae
for the operator P (D) defined by formula (2.27).

Till now we have considered D-algebras over reals. Now we shall
pass to D-algebras over the field C of complexes. Write: ¥ = X@®1X.
The set Y is an algebra with the addition, multiplication by scalar and
multiplication of elements defined as follows:

(a+1b) +(c+1b) = (a+¢)+i(b+d),
Ala+ib) = Aa+1i4b for a,b,0c,de X, 1eC,
(a+1b)(c+1id) = (ac —bd)+i(ad+be).

Let A = L(X) and let 4 = x+14y, where 2,y e domA. Write:

(2.28) Ay = Ax+i4dy.

By this definition A € L(Y). Indeed, A(Au) = A4u for all AeC, ueX.
Observe that Au = A%, where we write & = 241y =  —1y.
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Indeed, we have Au = Ax+idy = Awv—idy = A(x —iy) = A%.

Tt is casy to verify that ¥ = X@1X is a D-algebra over C, provided
that X is a D-algebra over R. Initial operators and right inverses are
extended according with formula (2.28). Write formula (1.7) in the complex
case: For all , v e domD (in Y) we have

fo(u, v) = D(uv) —ep(uDv 4 vDu)
where ¢, is a coefficient defined by formula (1.7) in the D-algebra X.
By this definition, since ¢, € R, we have

(2.29)  fp(w,?) = fp(u,v) = fp(v,u) for all u,vedomD.
Indeed,

fo(®@, B) = D(ud) — ¢y (wDv+5Du) = D(us) —cp(uDT+0D%

= D(uwv) —cp(uDv+oDu) = fp(u, v) = fp(v, u).
Formula (2.29) implies that

(2.30) uDv—oDV wu = ¢p' D(ww)—fp(@,v) for all u,vedomD.
Indeed, since D* = —D, we find
uDv—vD*u = uDv—vD*u = wDv+vDu = cp'[D(ww) —fp(%, v)].

We also have
(2.31) (AD)* =7D* for all 1eC,

i.e. the operator D* is antilinear in the complex case.
Indeed, by formulae (2.30), (2.31) we have for D = D

w(AD)v—v(AD)tu = @Dv—vD*u = 051 [15(17;0) —fb(z‘c, )]
= ¢p' [AD{wv) —f;p(%W, v)] = Acp' [D(wv) —fp(%, v)]
= A(wDv—vD*u).
This implies that for all AeC, u € domD we have
AD*% = AD*u = (AD)*u = (AD)*u.
The arbitrariness of « e dom.D implies (2.31).
In particular, we have
(2.32) (¢D)* = iD.
All further considerations are going in similar as in the real case.
In particular, the Green formula (2.3) in the complex case is of the form

(2.33)  FyR,[7Q(D)y —y@* (D)z]

N-1
= 2 (—1Y e+ (F,—F,) (YQ;.11%) + Fo B, (9o (Z5 ¥) + by (Fy ¥) ],

=0

Where goi; ho(py are defined by formulae (2.4), (2.5).
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Indced, if we put « instead of 7 and we shall make use of (2 29),

we obtain that

N - N
Q*(D)z = D' (—1)* D@z = D' (—1)*D*Q,7,
k=0 k=0

which implies formula (2.33).
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