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Abstract. Suppose that a solution z(z, ¥) of the first order partial differential-
funetional equation

n
2(x, ¥) =f(z, ¥, 2(z, ¥), 2( 2 99 (@, ¥)zy, (2, ¥)

it defined on
E={xY):0<o2—3y< a, (@ <y < 5@, i =1,...,n}.
Let
Gz, Y,2,Q;u) =f(w’ Y, u=, Y):'u('))"i'

n
+fo(x, Y, u(@, ¥),u(-))(z—u(x, 1))+ D ¢z, ¥)g;,
i=1

H(x, ¥Y,2,Q;u,v) =f(o, ¥,v(z, ¥),v("))+
f(a; Y,u(@, ¥),v())—f(z, ¥,v(=, ¥),v( ))
u(x, ¥Y)—v(=x, Y)

n
+ D 99(=, ¥)g;.

i=1

Suppose that a sequence (u(™ (z, ¥), o™ (a, ¥)} is such thas
ulm (z, ¥) = G(z, ¥, um)(z, ¥), ul (2, T); uim-1),
VM (z, ¥) = H(z, ¥, o™ (2, V), o (@, ¥); um=1), om=D),

(z—v(z, X))+

In this paper we prove that under certain assuinptions concerning the functions
f> 99, ulm), »(M) the conditions

um=D(g, ¥y<uM™(z, V)< 2(x, V)< o®(z, V)< o™, T),

(zx, Y)eB, m=1,2,...,
and
lin (o) (z, ¥)—ulm(z, ¥)) =0, (z,Y)ek,

m-—->00

are satisfied. We also give estimates of the difference between the oxact and the approx-
imate solutions.
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Let C (B, E, R) be the class of continuous functions from #,u E into R,
where B = ( — o0, 4 o0) and

“(Yiy oo W)

Eo={(w, Y): wo_ro<{n< "’To>o Y
D) <Y < K@), i =1,...,m},

E={x Y):0<2—2,<a,a>0, F(x) <y, <§x), i=1, n}.
Agsume that
() 7; and §;, ¢ =1, ..., n, are continuous functions on [x,— 7, ]

and 7;(x) < s;(x), e [Tu—to, R
(b)¥;and §;,% = 1,..., n,are of class C'on [y, 2y-+ @) and 7, (x) < §;(@)
for x e [y, %, +a), (mo) = Fi(@q), §:(@) == 5;(2,).
Elements of C(E£,uF, R) will be denoted by z(-), u(-), v(-) and the
like.
Let
H, = {({0): (§,0)eE,VE, §<a}.

Suppose that the functionf (2, ¥, 2, u( -)) is defined on E x R X C(H,U E, R).
We assume that f satisfies the Volterra condition, i.e., if (2, ¥, 2, ("))
eEXRXxC(E,VE, R)fori =1,2and u,(§, O) = u,(&, O)for (£,0)e H,,
then f(x, ¥, 2, u,(-)) =f(z, ¥,2, u,(-)). Suppose that the functions
g?(x, Y) are defined for (z, Y¥) e E.

We shall consider here the initial problem for the first order partial
differential-functional cquation

n

2. (x, ¥) =f(£L‘, Y, z(r, Y),z()) +'Zg(i)(x) Y)zyi(w’ Y), (z, Y) e E,

i=1
(1)
2(¢, Y) =a(z, Y) for (v, Y)e E,,

where a is a given initial function.

We are interested in working out a method of approximation of
a solution of the Cauchy problem for equation (1) by solutions of an asso-
ciated linear equation and in estimating the difference between the exact
and approximate solutions. This is precisely what the Chaplygin method
accomplishes (see [3], [6], [8], p. 90-96).

The basic tool in our investigations are theorems on partial differen-
tial-functional inequalitics of the first order.

The paper is divided into two parts. The first part deals with partial
differential-functional inequalities. The second part contains theorems
on the Chaplygin method for the Cauchy problem (1).

Our results are generalizations of some results of paper [7], where
the Chaplygin method for partial differential equations of the first order
was considered.
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I. Partial differential-functionai inequalities. Lt

K = {(z, Y): @ =z, 7,(%,) < Y; < 5;(2y), © =1,...,0},

S = {(z, Y): (#, Y) e E— K and there exists j, 1 <j< n,

such that y; = §;(x) or y; = 7;(2)}.

We introduce

AssumprioN H,. Suppose that

1° thereal function ¥ (v, ¥, z, %(-), Q) is defined for (2, ¥, 2z, u(-), @)
eEXRXC(E,VE, R)x 2, where £ is a domain in the n-dimensional
Euclidean space,

2° F satisfies the Volterra condition, i.e., if (z,Y,z, %), Q)
EEXRXCEVE,R)x 2 for i =1,2 and u,(¢&, 0) = Uy(&, @) for
(¢,0) e H,, then F(w Y,2,u,(:),Q) = Flz, ¥,z,uy(*), ),

3° F(x, Y, z,u(),Q)is non-decreasing with respect to the functional
argument u(-),

4° for each point (%, Y)e S, Y = (¥, ..., %,), there exist sets of
integers I,,I,, I; such that I,VI,vI; = {1,2,...,n} and
y; =71,(z) for 1€l
¥; = §;(z) for iel,,
7,(%) < ¥y, < §;(x) for ¢ el,.
We assume that

2) F@ Y,2,u(-),Q—F(, Y,z u(),Q+
+ YE@ @G-+ Y 5@ (4-2) <0,
tely fely

where ¢ = (q1y eoo9 2)) Q = (qyy .-+, q,) and < q; for iEIly 4= G
for i el,, ¢ = §; for ¢ e I,

5% u(-), 9(-) e C(E,VE, R) possess th_e derivatives %, v,, Uy
= (Uy ooy By )y Uy = (Tyy--.y%,) o0 E—K (not necessarily contin-
uous), and the total derivative on 8,

6° %y (z, Y), vy(x, ¥) e 2 for (z, Y)e E—K.

Remark 1. If F satisfied the Lipschitz condition

IF(.’D, Y,z,u(-),Q—F (w Y, 2, u( ZMklglc |

and
(@) =y — b+ My(@—zo), k=1,...,m,

fu(@) =y + b —My(w—w), k=1,...,n,
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where b, > 0, ¥V —b, = 7,(,), YO +b;, = 5,(x,), & < min(d;/M;), then
condition (2) is satisfied (see [2]). i
THEOREM 1.1. Suppose that
1° Assumption H, is salisfied,
2° the functions u(-) and () fulfil the initial inequalities
a(w, Y)< 9, Y) for (v, Y)e E,,
(3) _ _ _
(T, Y) < (@, ¥) for (@, Y) e K,

and the differential inequalities

4) u(z,Y)<F(z, ¥,uz, X),u(), dplz, ¥)), (x,Y)eE—K,
(6) (2, Y)>F(z, Y, ¥),5(:), 9p(z, ¥)), (2, ¥)eE—K.
Under these assumplions
(6) (e, Y)<v(w, Y)
for (z, Y)e E.
Proof. If assertion (6) is false, then the set
Z = {x: ®e[xy,x9+a), U(w, Y) > v(x, Y) for some (z, Y) e B}

is non-empty. Write z* = infZ; it is clear from (3) that z* > x, and
#(x*, Y*) = v(2* Y*) for some (z*, Y)eH, Y = (],...,v])).

Now, there are two cases to be distinguished.

(a) If (z*, Y*) is an interior point of E, then %@y (z*, Y*) = o, (a*, Y*)
and

(7) i:|:(w’.l7 Y‘) _53("3*) T) =0.

Since u (&, 0) < ¥(&, @) for (£, O) € H,., it follows from conditions 2°, 3° of
Assumption H, and from (4), (5) that
Ty (@* Y)—7,(2*% X7
< Fjo*, X*, a2+, Y*), w(-), @y (a*, Y*) —F(z*, X", (2, ¥*), 5(-),
vp(z*, Y')) <0,
which contradicts (7).

(b) Suppose that (z* ¥*)e S. We may assume (rearranging the
indices if necessary) that

y; =§(x*) fori=1,...,s,
(8) y; =¥, (@*) for ¢ =s+1,...,p,

Ty (z*) <y; < §(x*) fori=p+1,...,n.
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Then
By, (@*, Y*)—w, (2%, Y>>0 fori=1,...,s,

(9) @y, (2% Y*) -7, (2% Y )< 0 for i =s+4+1,...,p,
u (w,ZY)—a“JW(w,Y)=O for e =p+1,...,n.

Y(2) = (El(w)’ cory 8(2), Toyn (), ..oy Tp(@), 3/;+1’ sy '3/:)

and consider the composite function #(z, ¥ (#))—%(z, ¥(2)). It attains
maximum at z* and hence

8
(10) B (2% Y*) =5, (0% Y+ D[4, (%, X*)— 0, (e*, Y*)]§(a*) +
i—1
P
+ D [m,(@*, Y*) =7, (a% TH]F(@*) >0,
i=8+1
Since % (&, 0) < v(§, ©) on H,., we obtain by conditions 2°,
3° from Assumption H, and by (2), (4), (5), (8), (9) that

By (2%, X*) —0, (2%, X*)
< F(x, Y aes, X7), @(), Gy (z*, ¥*)) — F (2, Y, o(z*, Y7),
7(-), vy (z* Y*))

< = Yt T =9, @, Y66 -

D
— ) [@, (=%, T*)— 5, (a*, TIF(X"),
1=8+41
which contradiets (10).

Hence Z is empty, and the statement (6) follows.

Remark 2. If v, = 0 and F does not contain the functional argu-
ment, then from Theorem 1.1 we obtain the well-known theorem on strong
first order partial differential inequalities (see [8], p. 169-171, [6], vol. II,
p. 113-116, [9], Theorem 1.1).

Remark 3. In Theorem 1.1 we might assume instead of (4), (5) that

u (@, Y)QF((D, Y, u(x, Y), u(-), uy(=, Y)): (z, Y)e E— K,
v(x, Y) > F(wy Y, vz, X),9(), vy(z, Y))’ (wy Y) EE_I?:

where for each (x, Y) € B —K equality holds in at most one place.
We introduce
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AssumpTiOoN H,. Suppose that the condition
F(-"” Y,z,u(+), Q)—F(w’ Y,z,u(-), Q) < o(@—my,2—2)

is satisfied for (x, ¥, 2, u(-),Q), (z, ¥,%,u(-),Q)e EXRx C(E,VE, R) x
X £ and z < %, where the function ¢(¢,2) has the following propertics
(see [1]):
1° o(t,2) is continuous and non-negative for fe [0, a),2< 0, and
o(t,0) =0,
2° the left-hand minimum solution of the equation
2 =a(t,2)

satisfying the condition lim 2z(t) = 0 is z(¢) = 0.

t—-a—

THEOREM 2.1 (see [11). Suppose that
1° Assumptions H, and H, are satisfied,
2° u(-) and %(-) satisfy the differential inequalities

an (2, Y)< F(e, ¥, u(x, ¥),u(:), uy(z, X)), (v, ¥)e E—I_(_,
v (e, Y)> F(2, Y,v(x, ¥), ("), vp(®, Y)), (# ¥)eE—K
and the initial inequalities
u(z, Y)<%(x, Y) for (z, X)e E,,
u(zy, Y) < %(@, ¥Y) for (z,, Y)e K.
Under these assumptions the inequality
(13) Uz, Y)<v(w, Y)
18 satisfied for (z, Y) e E.
Proof. At first we prove (13) for (z, Y) e ¥ and x, < < 2,4+ a —¢,
where 0 < ¢ < a.
Let 0 <2< min [3(z, Y)—%u(z, Y)]. For 6 > 0 denote by w(t)

(z,¥)eK
the right-hand minimum solution of the equation

(12)

’

¢ = —a(t, —2)— 8

through (0, 2,). If 2z, > 0 s fixed, then to every ¢ > 0 there corresponds
do(e) > 0 such that for 0 < é < d,(e) the solution w(t) exists and is posi-
tive in the interval [0, a —¢) (see [1]). Let 6 > 0 be such a small constant
that the function w(t) satisfies the above conditions.

Denote by z(x, Y) a continuous function defined in F, such that

(14) u(z, Y)<z2(z, Y)< %z, Y), (2, Y)eH,,

and
2(xyy Y) = u(xy, ¥)+2p, (%, X)e K.
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z(x, Y) for (z, Y) e E,,
w(z, Y)+w(@x—x,) for (2, Y)eE, z,<zv<zy+a—e.
We shall prove that
(15) w(z, Y)<w(r,Y) for (x,Y)ekF, e[z, x,+a—¢).
By Assumption H, and (11) we get
Uz, Y) =0 (z, ¥)+ o (z—x,)
<Flz, Y, (s, Y), u(-), ay(z, Y))—o(@—xy —w(@—x,))— 8
<[Flz, Y, %z, X), ("), dy(e, ¥))~F(w, Y, @, ¥),u("),dp(x, Y))]+
+F(z, Y,u(x, X),a(-), uy(®, ¥))—0(®—2y, —w(@—,)—8
<Fle, Y,u(w, Y),a(), dy(x, ¥))—6.
It follows from the above estimations that
(16) iy, X) < Flz, ¥, i(o, Y), @(-), dy(z, T))
for (v, Y)e E— K and = € [%,, T,+ a— &).
By the definition of %(xz, Y) we have
u(z, Y)< vz, Y) for (z, Y)e &,
w(zy, Y) < 9(xy, ¥) for (zy, Y) e K,

and hence, by the second inequality of (11) and by (16), we get from
Theorem 1.1 that

u(z, Y)<v(x,Y) for (v,Y)eFE, velzy,,v,+a—c¢).
Sinece ¢ is arbitrary, inequality (13) holds true in E.
We introduce
AssumpTiON H,. Suppose that
1° a function o(t, 2,, 2,) is continuous and non-negative for ¢> 0,
>0,2,>0,and o(t, 0, 0) = 0,
2° the right-hand maximum solution of the initial problem

2 =o(tyz,2), 2(0)=0

18 z(t) = 0,
3° Fle, Y, 2, %,(-), Q) —F(z, ¥, 25, us(+), Q)

= —‘0'(-'1" T+ Toy 22 —21y SUP [uy(&, O) —u (&, 9)])
(&, ©)cHy

for 2; < 2y, u,(&, O) < uy(£,0) in H,.
THEOREM 3.1. Suppose that
1° Assumptions H, and H, are satisfied,

3 — Annales Polonlei Mathematicl XXXVIII.1
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2° the differential inequalities
) u(x, Y)< Flz, ¥, 4z, Y), u(-), igy(z, ¥)), (=, ¥) eE—I_?-,
7,2, Y)>F(a, ¥, ¥(a, ¥), ("), 9p(», ¥)), (2, Y)eBE—K,
and the initial inequalities
(18) u(z, ¥)<¥(z, Y), (z,Y)ekE,,

are satisfied.
Under these assumptions the inequality

(19) u(z, Y) < vz, Y)

18 satisfied for (x, Y) € K.
‘Proof. For ¢ > 0 denote by w(¢; ¢) the right-hand maximum solu-
tion through the point (0, ¢) of the equation

2 =o(ty2,2)+e.
For ¢ > 0 sufficiently small w(¢; ) is defined on [0, a +7,) and
(20) limw(t;e) =0 on [0,a+17,).

8—>0
Congider the function
(21) o(z, Y) =9z, Y)+ w(@—xy+ 10, ¢)y, (v, Y)eE,UE.
By Assuniption H; and (17), (21) we get

9.2, Y) = v.(z, Y)+ o' (®—2o+ 70y &)
>Flx, Y,5(x, X),5(), 5p(z, ¥))+ o' (@®—2,+ 7, ¢)
= F(z, ¥, %, ¥), 9(), 9¢(®, X))+
+[F(z, Y, 5=, X), (), 5 (2, Y))~Flz, ¥, 6(z, Y), 6("), Fp(z, V)] +
+0(x =g+ 1oy 0(T—Ty+ Ty, &), @ (T —By+ Ty, &) +e
> ;o(m—mo+ro,5(m, Y)-9(=, ¥), sup [9(&, ©)—3(¢, @)])"f-

+ o (@ — 2o+ 7o, @ (@ — T+ Ty ), w(w(i@z:Ij:Tm g))+e+

+F(2, Y,é(, Y),9("), bplx, ¥)) = F(n, Y, 0(z, ¥), 6(-), Oy (2, T)) +e.
Thus we see that the strong differential inequality

(22) ¥,(x, Y)>F(w, X, 0(x, ¥),9(:), 9p(z, Y)}, (v, Y)eE-K,

is satisfied.
By (21) we have

0(2gy Y) = 5(@0y ¥)+ w(70, &) > %(@, ¥) on K,
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and hence, by the first inequality of (17) and by (22), we get from The-
orcm 1.1 (see also Remark 1) that

iz, YY<o(z, Y) =02, Y)+ o(z—2,+7,, ¢)
for (z, Y) € E. From the above inequality and from (20) we obtain in
the limit (letting £ tend to 0) inequality (18).
TiteorEM 4.1. Suppose that
1° Assumptions H, and Hy are satisfied,
2° for(x, Y)e E—K
Uy (2, ¥) < F(mr Y, u(z, Y), u(), uy(x, Y));
v,(z, Y) > F(a’y Y,v(», Y),9(), vp(w, Y))7
where for each (z, Y) e E— K equality holds in at most one place,
3° for (x, Y) € E, we have
u(x, Y) < v(z, Y).
Under these assumptions
u(z, Y)<v(x,Y) for (z,Y)eE—K.

This theorem can be proved by applying the weak differential-
functional inequalities theorem (Theorem 3.1) and then repeating the
argument used in the proof of the theorem on strong differential-functional
inequalities (Theorem 1.1).

II. Chaplygin method. In order to simplify the formulation of subse-
quent theorems we first introduce the following definitions.

A function % (x, Y) is said to be of class D in B,V F if u(x, Y) is con-
tinuous in F,VE, has the first order derivatives u (x, Y), uy(z, Y) for
(z, ¥) € E and has the total derivative on &.

In this section we shall consider the almost linear differential-function-
al equation (1). For given functions u(z, Y), v(z, Y) of class D in E,U¥
we define

(23) G(z, Y,2,Q;u) =f(a77 Y,u(x, Y), u())+
+fz(m7 Y, u(z, Y), ""(')) (z_“(wi Y))+Zg(i)(m) Y)q;
i=1

and
(24) H(z, Y,2,Q;u,v) =f(a77 Y, v(z, Y)"U('))+

+ f(‘v’ Y, u(z, ¥), v()) —f(a% Y, v(z, Y), v ))
u(r, Y)—ov(z, Y)

(z—v(z, Y))+

+ D¢, Vg, it ulw, ¥)—v(z, ¥) £0

t=1
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and

(25) H(z, Y,2,Q;u,v) =f(wv Y,v(z, Y), ‘D(-))—l—

+afe, ¥, 0(@, ), 0(1) (e—o(@, T))+ D g9, Y)g,

=1

if u(z, Y)—o(z,Y) =0,

where @ = (¢1) -+, ¢,)-
Suppose that we are given a sequence {u™(z, Y), o™ (x, Y)},
where 4™ (x, ¥) and v (2, Y) are of class D in E,UE and

(26) w™(z,Y) =Gz, ¥, u™ (2, X), uP (2, X); u™D),
(z, Y)eE, m =1,2,...,
27)  o™(z, Y) = H(z, Y, o™ (z, ¥), o (2, Y); u™ D, om=),
(z, Y)eE, m =1,2,...
A sequence {u™(z, ¥), v"™(z, ¥)} which satisfies (26), (27) will be

called the Chaplygin sequence.

Remark 4. If %™V, 9™ D gre known functions, then u™), o™
are solutions of linear partial differential equations. Sufficient conditions
for the global existence of solutions of linear partial equations can be
found in [4].

We introduce

AssuMPpPTION H,. Suppose that

1° the real function f(z, ¥,2,u(-)) is defined for (=, ¥, 2, u(-))
eExXRxC(E,vE, R) and satisfies the Volterra condition, i.e. if
(@, Y,2,u (-)) € EX Rx C(E,VE, R)fori = 1,2 and u,(&, @) = u,(&, O)
for (£, 0) e H,, then f(m, Y, ul()) =f(wv Y, 2, uy( ))7

2° f(®, ¥, 2, u(-)) is non-decreasing with respect to the funetio :al
argument %(-),

3° the functions ¢ (z, ¥), ¢ = 1,...,n, are defined on E and for
each (z, Y) e § such that

y; = 1,(x) for iel,,
y; = §(x) for iel,,
7(@) < y; < §;(w) for i e I,

where I,VI,Ul, = {1,...,n}, the inequality

D@, D) (g—3)+ D F@) g —a)+ D #i(@) (g —F;) <0
i=1 el tely

is satisfied for ¢; < q; fort e I,, q; > q;fori e I,, g, = g; for ¢ € I,
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4° the derivative f, exists on E X R x C(E,UE, R),

5° zZ(x, Y) is a solution of (1) and is of class D in E,UE.
THEOREM 1.2. Suppose that

1° Assumption H, is salisfied,
2° the derivative f, 18 increasing with respect to z,

3° uO(x, Y) and v (z, ¥) are functions of class D in E,VUE and
for(z, Y)e E— K

(28) u;(:o)(wa Y) <f(w1 Y, '“(0)(417’ Y), u(o)( )) + ng(ms Y)’ML?(:D, Y),
i=1

(20) o0z, ¥) > flz, ¥, (2, ¥),09()) + ¥ g9, ¥)o0(z, ),

i=1

4° the Chaplygin sequence {u™(z, Y¥), v"™(z, Y)} of functions of
class D in E\VE satisfies the initial conditions

(30) u™ Nz, ¥)< u"™ (2, ¥) < Z(z, ¥) < 0™z, ¥)< o™ Nz, ¥),

(¢ Y)eE, and m =1,2,...
and

(31) “(m—u(wo, Y) < ’“'(m)(mo, Y)<zZ(z, Y) < ”(m)(‘voa Y) < "J(m_l)(mm Y),

(®g, Y)e K, m =1,2,...
Under these assumptions

(32) w Nz, ¥) < u™(z, ¥) < 2z, y) <™ (2, ¥) < v(m—l)(w9 Y),
(z, Y)e B, m =1,2,...,
and
(33) w™(@, ¥) < flz, ¥, u™ (@, V), u™ (")) + Y ¢, V)uiP (=, ¥),
i=1
(z, Y)e E—K, m =1,2,...,

(34) (@, ) > flz, ¥, o™ (2, ¥), o™ ()} + ) g9z, V)i, T),

i=
(¢, Y)e E—K, m =1,2,...
Proof. From (23), (26), (28) it follows that
(35) u(w, ¥)<Gw, ¥, u(z, ¥),sP (2, ¥);4Y), (z,Y)ecE-K,
and
(36) uQ(%,Y) =Gz, ¥,u"(z, ¥),uP (@, ¥);u"), (v, Y)ek.

Since (2, ¥) < «(x, ¥) for (z, ¥) € K, we obtain by theorems
on strong differential inequalities (see [5], [8]) that

(37) Wz, ¥)<uz,Y) for (z,Y)ek.
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In a similar way we prove that
(38) Wz, ¥) < o9z, Y) for (z,Y)eckE.

Now, we prove that for (z, Y)e E—K

(39) wM(z, Y) < flz, ¥, vV (z, T), uV(- +Zg(')(a: Y)ul) (@, ¥).
=1
Inequality (37) together with the monotonicity condition of f and
assumption 2° of our theorem, imply

flo, ¥y u (@, X), w( )-I—Zg"')(a: Y)ul) (@, ¥)—ull(z, ¥)

> flz, ¥, w2, X), () + D) ¢, V)up) (@, ¥)—

i=1
"f(wy Y, “(0)(33: Y), u(o)( )) -1 (‘1"7 Y, u(o)(w, Y), u(o)( )) (u(l)(my Y)—-
n
—ul(z, Y)) —Zg‘“(m, Y)uy) (@, ¥) > 0.
i=1
Thus we see that differential-functional inequality (39) is true.
Since the functions »"(z, ¥) and z(x, Y) fulfii the assumptions
of Theorem 1.1, we obtain

(40) Nz, Y)<2(x,Y) for (x,Y)eE.
From (28)-(31) and from Theorem 1.1 it follows that

(41) ¥z, ¥) < vz, ¥Y) for (z, ¥Y)eE.
Hence,

wO(x, ¥) < flz, ¥, u", ), u(o)(-))-l-Zg”)(w, Y)uy,) (#, ¥)
i=1

n

<flz, Y, u, V), 0)+ Y ¢, V)ul)(s, Y)

i=1
= H(wi Y, w9z, ¥), uP (z, ¥); u?, 'U(O)),

and consequently, we have, applying theorems on partial differential
inequalities (see [8], Theorem 57.1, [6], Theorem 9.5.1)

(42) Oz, ¥) < oW(®, ¥) for (v, Y)ekE.

The function f is convex in 2z and non-decreasing with respect to
the functional argument; hence for (z, ¥) e E—K we have
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'Dm(“"r Y) :f(a"y Y”D(O)(IE, Y)’ ,v(o)(,))_[_

f(a;’ Y, u%a, Y), ”(0)(')) -f(w’ Y, v (, Y), "’(0)(')) %

+ wz, ¥)—2O(z, ¥)

x (o0 (@, ¥)— (@, T)) + D ¢ (@, 7)) (=, ¥)

i=1

> flz, ¥, vz, ¥), "’(1)('))+ an(i)(w’ Y)"’g;?(m’ Y).
i=1
Thus, we have for (z, Y) e E—K
43) vP(z, ¥)>f(z, ¥, oV (x, ¥), v(l)(-))—kjg“)(x, Y)vg,li_’(w, Y).
i=1
From the initial inequalities (30), (31) for m = 1 and from (43) we
obtain by Theorem 1.1

(44) Z2(x, ¥) < "N, Y) for (z,Y)eE.

It follows from (37)-(40), (43), (44) that assertions (32)-(34) are
satisfied for m = 1. The proof of (32)-(34) for m > 2 is simple, it runs by
induction.

Now, we consider the case when the derivative f, is decreasing with
respect to z.

THEOREM 2.2. Suppose that

1° Assumption H, is satisfied,

2° the derivative f, is decreasing with respect to z,

3° 4z, ¥) and v (x, Y) are functions of class D in E,UE and for
(¢, Y)e E—K h

“:(co)(a"’ Y) <f(w) Y, u(o)(ma Y), “(0)('))+Zg(i)(w’ Y)“L?(a% Y),
i

oD@, ¥) > f(z, ¥, vz, ¥),99())+ )

i=1

Y g9 (x, Y)’DS?(.’D, Y),

4° there exists a sequence {u™(z, Y), v™(x, ¥)}, where u™(z,Y)
and v (z, Y) are of class D in E,UE and

ugm)(a:, Y) = H(m, Y, u("‘)(a;, Y), u‘fi‘)(a}, Y); ,U(m-—l)’ u(’"‘l)),f
(z, Y)eE, m =1,2,...,
oM@, Y) = Gz, ¥, o™ (z, ¥), o (x, ¥); o™ D),
(¢, Y)e B, m =1,2,...,
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5° the initial inequalities

w2, V) < u™ (2, ¥) < Z(2, ¥) <o™(z, ¥) <oV, T),
(@, Y) e By, m = 1,2, ...
u™ V(x,, ¥) < u™(z,, ¥) < 2(2y, ¥) < 0™ (2, ¥) < é(m_l)(a’oy Y),

(e, Y)e K, m =1,2,...
are satisfied.

Under these assumptions
wm Vg, ¥) < u™ (2, Y) < z(z, ¥) < v™(z, ¥) < o™ Nz, T),
(¢, Y)eE, m=1,2,...
and

u™ (e, ¥) < flz, ¥, u™ (@, ¥), ™ () + ¥ ¢, V)ul™ (=, ¥),
i=1

o (2, Y) > f(z, ¥, o™ (@, ¥), o™ () + Y ¢ (@, V)0 (=, ¥),
g

(¢, Y)eE—K, m =1,2,...

We omit the proof of this theorem.

THEOREM 3.2. Suppose that

1° Assumption H, is satisfied,

2° the derivative f, is non-decreasing with respect to z,

3° there exists a constant N > 0 such that

Ifz(‘”’ Y, 2, u())l <N

on ExRxC(E,VE, R),

4° u @, Y) and v (z, Y) are functions of class D in BE,VE and
Jor(z, Y)e E—K

“;(.;0)(“71 Y) gf(w! Y, u(o)(w’ Y), “(0)('))"‘29“)(“” Y)“;fg)(w’ Y),

i=1

n
oO(@, ¥) > f(z, ¥, 0@, ¥),0"(-))+ D ¢, Y)o{)(x, ¥),
=1

B° the Chaplygin sequence ('™ (x, ¥), v™ (z, ¥)} of functions of class D
in B UE satisfies the initial conditions (30) and (31).
Under these assumplions
w™ Nz, ¥) < u™(z, ¥) < z(z, ¥) < o™(z, ¥) < v (z, ¥),
(zy, Y)eE,m =1,2,...,
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and
w™(z, ¥)<f (2, Y, u™ (2, ¥), u"™ ()} + 2 99 (@, ¥)ug(, ¥),
i=1

o™ (@, ¥) > f (2, ¥, 0™ (2, ¥), o))+ ) g9, T)o" (2, T),

i=1

(#, Y)eE—K, m =1,2,...

This theorem can be proved by applying Theorem 2.1 and by an argu-
ment similar that used in the proof of Theorem 1.2.

It is easy to formulate a theorem analogous to Theorem 3.2 in thef
case when f, is non-increasing with respect to z (see Theorem 2.2).

The above investigations were based on Theorem 1.1 and Theorem 1.2.
We have been dealing with strict inequalities between ™ (2, ¥),
u™ (2, Y), z(z, ¥), v™(z, ¥) and v™ (2, ¥) on E.

The next theorem concerns weak inequalities.

THEOREM 4.2. Suppose that

1° Assumption H, i8 satisfied,

2° the derivative f, is non-decreasing with respéct to z,

3° there exist constants M, N > 0 such that

Ifz(w’ Y, ""())I <N

and

\f@, Xy 2,u()—flz, Y,2,0())| < M sup [u(§, O)—v(E, O)

(¢,0)cH ;

for (z,Y,z,u(-)), (#, ¥,2,0(-)) e EXRxC(E,VE, R),
4° vz, Y) and v (x, Y) are functions of class D in E,VE and

for (z, Y)e E— K
uM (@, ¥) < flz, ¥, vz, T), u®(-))+ Zg(” (#, Y)ul)(z, Y),
(45)
v (2, Y) >f(m1 Y, "=z, ¥), v +29(')(m Y)"-’(o)(w Y),
5° the Chaplygin sequence {u™(x, Y), v™ (z, ¥)} of functions of
class D in E,UE satisfies the initial conditions
(46) W™ Vg, V)< u™(z, ¥) <z, ¥)< ™ (x, Y) < o™ Dz, ¥)

for(z,Y)eE,, m =1,2,...
Under these assumptions

u™ Nz, ¥) < u™(z, ¥) <2z, ¥) < o™(2, ¥) <o V(z, ¥)
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for (z,Y)eE, m =1,2,... and

n
u™ (@, ¥) < flz, ¥, u™ (@, ), u™ () + > ¢?(z, Y)u{P(z, V),

=1

n
o (z, ¥) = fle, T, o™ (z, ¥), o™ () + Y ¢, Vol (2, ¥),
t=1
for (¢, Y)eE—K, m =1,2,...
This theorem can be proved by applying the weak differential-
functional inequalities theorem and by the argument used in the proof
of Theorem 1.2.

Remark 5. It follows from Theorem 4.1 that if assumptions 1°,
3% 5° of Theorem 4.2 are satisfied and if

1° f, is increasing with respect to 2,
2° for (z, Y)e E—K

%g’)(-’ﬂ, Y) <f(97a Y, “(0)(5”1 Y), “(U)('))'i‘zg(i)(my Y)'“’S?(my Y),

i=1
o0 (@, Y) > fla, ¥, vz, ¥),v"()) + )¢9z, T)oMz, ¥),
1=1

then

w™ Ve, ¥) < u™(z, ¥) < z(w, ¥) < v™(z, Y) < o™ V2, V),
(x, Y)eE—K, m =1,2,...,
and

“Srm)(w) Y) <f(.’L‘, Y, “(m)(w, Y), u(m)(’))"‘zg(i)(‘”y Y)“LT)(Q” Y),
i=1

o (@, X) > flo, ¥, o™ (@, T), o™ () + ) ¢, T)o{P (s, Y),
i=1
(2, Y)e E—K, m =1,2,...

Remark 6. It is easy to formulate a theorem analogous to Theo-
rem 4.2 in the case when f, is non-increasing with respect to z (see Theo-
rem 2.2).

In the next theorem we take up the problem of convergence of the
Chaplygin sequence to the exact solution. We also give estimates of the
difference between the exact and the approximate solutions.

THEOREM 5.2, Suppose that

1° assumptions of Theorem 4.2 are satisfied,
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2° for (v, Y)e E we have

(47) Z(z, Y)_u(o)(a” Y)<4,
(48) W (x, ¥Y)—2(w, Y)< 4,
and

(49) Zx, Y)—u™ (v, ¥Y)<e, for(z,Y)eE, m=1,2,...,
(50) o™ (z, ¥)—2(x, Y)<§, for (z,Y)eE, m=1,2,...,
where

(1) lime, = lim§, =0.

m—o0 m—>00

Under these assumptions

lim ™ (x, ¥) = %(z, ¥), limo™(z, ¥) =32z, Y)

m—o0 m—>o0

uniformly with respect to (z, Y) e E and
(52)  Z@, ¥)—u"™(z, )< bhy,(2), (2,Y)eB,m=1,2,...,
(33) "Nz, ¥)—zZ(@, )< h,(®), (@, Y)eE, m=1,2,...,

where -
(2N +M)(x—2x,) 4 (2N + M)2(x—x,)?

hm(m) = eN(:c—wO) [sm + Em—1 1! €m—2 21

. (2N +M)" (@ — @)™ " 4 (2N+M)m(w_w0)m]
' (m—1)! m! ,
and
7 2N +M)(x— ON M2 (5 —2,)2
B (@) = eVE—zg) [§m+'§m—1 ( + 1)'((0 ) +§m_2( + 2)'(;1; Zo) +
_ @N4+M™ N o—zy)™ ' o (2N—|—M)"‘(m—a;o)"‘]
T AT 4 m -

Proof. At first we prove (52).
Since

2, (@, ¥)—ul) (x, ¥)
< [f(m: Y, Z(#, Y), 2()) _f(wy Y, uw)(a:, Y), u(u)(_)” +
+f.(, ¥, v, ¥), w()) [uV (2, ¥)—u(z, T)]+
+ Y @, Y)[7,(@, T)—u) (@, T)],

i=1

43
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it follows that the function z(x, ¥)—u"(z, ¥) satisfies the differential
inequality

2z, ¥)—u(x, ¥) S N[Z(z, Y¥)—u(z, )]+ A (2N + M)V

-I—Z‘g(i)(w, Y)[Zw(my Y)_ugjli)(mi Y)]; (wy Y)EE'
f=1
Since

2(@o, ¥)—u (1, ¥)< &, for (ay, ¥Y)eK,

we obtain from comparison theorems for partial differential inequali-
ties ([5], Theorem 9.5.3, see also [8], Theorem 37.1)

(54) (2, T)—u(z, ¥) < hy(2),
where %, is a solution of the Cauchy problem
dz Niz—
o = Ne++ AN M) V=20, 2(xy) = .
Because

hy(@) = eNE=7 [, + A (2N +M)(z — 2)],

we obtain from (54) the estimation (52) for m = 1.

Suppose that (52) is true for a certain fixed m. From the definition
of w™+t)(x, Y) it follows that

Z, (2, Y)—u{" (2, Y)

<[flx, ¥,z(x, X),2(-)) —f(z, ¥, u™ (@, T), u™ ()] +
+ Z 99 (@, Y)[3, (=, ¥)—ul?*" (2, ¥)]+

+f ("”: Y, u‘"‘)(w, Y), u(m)(,)) [(2(0), Y)_u(mH)(w; Y))""
+ (2(z, T)—u™ (2, X))].

Thus we see that the function z(zx, ¥)—u™*"(x, ¥) satisfies the
following differential inequality

(53)  Z (@, ¥)—ul**V (2, ¥) < N[Z(z, ¥)—u"*V (2, ¥)]+

FEN +M)hy(n)+ Y (@, )iz, (0, V) —ur V@, T)], (0, T) € E,
i=1

and the initial inequality

(56) Z(wy, Y) _u(m+1)(w0, Y)<eppy (@, X)e K.
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Relations (55), (56) together with the comparison theorem for partial
differential inequalities, imply

(57) iz, ¥)—u™ 2, Y)< by, (2), (2, Y)ekE,

where h,, () is a solution of

dz
F N+ Q2N+ M)h, (x), 2(x5) = &p4q-
Because Ay, (%) = hy. (@), We obtain from (57) the estimation (52) for
m+ 1.
Thus, by induction, relation (52) is true for all m.
Since

= (2N + M) (2 — )
E @4+ ;|( Yo < 400 for x> x,
i=0 '

and lim e, = 0, then

m—>oo
lim b, (2) =0
m—>o0
uniformly with respect to » e [w,, ,+ a).
In a similar way we can prove (53) and that

lim o™ (z, ¥) = z(z, X)

m—»oo

uniformly with respect to (z, Y) € E.

Remark 7. It is easy to prove a theorem analogous to Theorem 5.2
in the case when f, is non-increasing with respect to 2.

Remark 8. If vz, ¥)— 4, Y)< K for (v, Y) e E, then esti-
mations (47), (48) are satisfied for 4 = 4 = K.
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