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Indeterminate forms for multi-place functions

by A. I. FINE (Urbana) and S. KAsS (Chicago)

§ 1. Introduction. A well-known theorem of Bernoulli, commonly
called “I’Hospital’s Rule” (cf. [1]), states that if a pair of differentiable
1-place functions f, ¢ have a common zero or a common infinity at
a point 4, which is not a limit point of zeros of ¢', then

im! =L  whenever limz;=1}.
4 g 4 g
In this article we extend this theorem to higher place functions
by proving that if a pair of differentiable -7 -place functions f, ¢ have
a common zero or a common infinity at a point 4, which is not a limit
point of zeros of g,, then

].imI=L whenever limﬁ'=13,
4 9 4 Ga
provided that, in the case where |g| >oo, f and g are ewternally bounded.
(Terminology and notation will be explained in § 2.) Just as in the class-
ical case the theorem extends to the various ‘‘infinite cases” of L and A.
For simplicity results are stated for 2-place functions; however
each result holds for =»-place functions: simply replace ‘2’ by ‘s’ in
each proof and read the summation signs accordingly.

§ 2. Terminology. The symbol f(P) denotes the value of a func-
tion f at a point P: (p,, p,). Subscript notation will be used for partial
derivatives. In particular,

fo(P) = (cos a)s(P) + (sin a)fy( P) = %2‘1‘;;7_“2";;(@ ,

will be called the directional derivative of f with respect to A. Here A:
(ay, @;) i8 a fixed point, P: (p,, p,) a point variable, and a the angle
between the positively directed z-axis and the directed line determined
by segment (AP). The symbol (AP) ([AP]) will be nsed to denofe the
open (closed) directed segment from A to P.
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It is import&nt for what follows to observe that if X: (x,, #;) and Y:
(41, ¥o)- are any pair of distinet points on (AP), then cosa = (m;—¥yy)/4,
and sina= (@,—¥,)}/4, where 4= [ Z(ei— 1) 2]‘"" Thus for functions

f and g¢

(%) folP) _ D(pi—adtdP) _ J(@i—yq)fuP)
0(P)  Dpi—a)gP)  D(mi—y)guP)’

provided that these quotients are defined.

A ypoint set § C E?® is starlike with respect to point A if for each
Pel, (AP)CS.

A meighborhood N{A, 8) in S is the intersection in B2 of S with the
open sphere of center 4 and radius 6.

Relative to a fixed point A4, we ghall call a sequence of pomts {Q4}
external to a sequence of points {@i} if for all but finitely many <,
Qi € (@i 4). We shall say that a function f is externally bounded with
respect to 4 provided that the following condition holds for each neigh-
borhood N (4,8) of A: corresponding to each sequence {@i} C N(4,3$)
which converges to A, there exists a sequence {@;} C N(4,d), external
to {@7}, on which f is bounded.

§ 3. Main results. We require the following extension of the
Cauchy law of the mean to 2-place functions.

LEMMA 1. Let f and g be 2-place functions defined on S C E2. Sup-
pose that 8 contains a line segment L directed from X: (m,, @) to ¥: (Y1, ¥s)
with a the angle between L and the positive x-awxis.

If both f and g are continuous on the closed segment and differentiable
on the open segment, then there is some point P e (XY) such that

[H{X)—F(X)]ga(P) = [9(X)—g(X)]fa(P) .

Proof. Form the function

HX) g(X) 1
f(Y) g(¥Y) 1
pry= D o(D) 1
[ (@i—yay]
and apply the law of the mean for 2-place functions at X and Y.
TEEOREM 1. Let A: (a,, a;) ¢ B and let f and g be funclions whose
domains include a set S C E* which is starlike with respect to A. Suppose
that on 8 the functions are differentiable and that g.(X), the directional
derivative of g with respect to A, is never zero. With the understanding
that all limits are taken from within S at A, there are two cases:
") f(4)=g(4)=0 or
(ii) |g|—>co and both f and g are emternally bounded with 'respeot lo A.
In either case we have that if
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(]‘ii) 1im faﬂ_)_ — L (?:.@. 1im Z(mi"- af) f‘(ml ? mi) — L)
4 goX) 4 D)(@i— @) ge(wy , @) ’

(v) lim ==

Proof. We first note that if only limf = limg = 0 is assumed, then
4 A

the hypotheses of case (i) are fulfilled if we define f(4)= g(4)= 0.
Oase (i). Let > 0 be given. Then there exists a neighborhood
N(4,8) such that for every point U: (u,, %,) in N (4, d)

2 (wi— as) f(T)
L— Lte.
M *Stu—aggm) =T

. Let X be any point (# A) in N(4,d) and consider the quotient
J(X)—1(4) _ }(X)
g(X)—g(4)  g(X)’

By the ordinary law of the mean, g(X) # 0 because g,(U) # 0 on N (4, é).
N (4, é) is starlike with respect to A; therefore [AX]C N (A, ). Hence,
by the lemma there exists a point P ¢ (4X) for which

HX) _ 2le—a) ()
9(X)  Dl(@wi— a0 g P)
Now (1) certainly holds for U = P; therefore

2(p1—as) fd P)
2 (pi— a1) gi(P)

(2)

L—e< <L+te.

By (%) and (2), however

2(p—aq) f(P) _ J(wi— ) fu( P) _ }(X) _
2(pi—a)g(P) D(wmi—a)g(P) ¢(X)
Thus L—e < f (X)/g(X) < L+e for all X e N (4 ,8), whence liAm(f (X)/g(X))=L.

Case (ii). |g|>oco. Let ' X be any point (# 4) in N(4,4) and Y
any point in (4X). We repeat the argument in case (i), with A replaced
by Y, and find that

H(X)—1(¥Y)
3 L—es< - ——5
@) <y @=g(T)
for every X, ¥ ¢ N¥(A,4), where Y e (AX). As before, g(X)—g(¥) # 0.
We can assume g = 0 on N(4,d) and so may divide in (3) to get

(X)X

g(¥) g(¥)
4 L—e<
@ ‘ 7(X)

9(Y)

< L+e,

< L+e¢.
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Now congider any sequence of points @; of N (A, §) which converges
to A. By hypothesis there exists an external sequence of points ¢ of
N(A4,d) on which both f and g are bounded. (4) is satisfied when X
and Y are replaced by @: and @;, respectively. Thus

f(Qf 1(Qs)
I—e<c 9@ 990 .,

L 990

9(Q7%)

Since the g(@:) are bounded, for large enough %, say in the neigh-
borhood N (A,4d’), we have that 1—g(Q')>O for all Qie N(4,4d).

9(Q7)
e @) _ 190 9@} | /(@0
ANCA] i AL ‘
a1 58] + 5@ < (94)<‘L+8’[1 @) @
tor the @4, Qc < (4, 8*), where 8*= min (3, &'). If i ->co, then 1 — fgg 1

and 1 (8f)—>0 from which it follows that

1(Q%)
L—2e < =< 70D < L+ 2¢

for all @; in some subneighborhood of N(4,é*). Since the sequence
Q% was chosen arbitrarily, lim f/g)

COROLLARY 1. In the theorem, L may be replaced by either of the
symbols oo, — ca.
Proof. We consider only oo. If lim(f,/gs) = oo, then for given
4

M > 0 there exists N (4, d) such that for all points P: (py, ps) € N (4, d)
we have

2(pe— 1) f( P)

2(pi— 1) g(P)

H(X)—1(X)
ToomrT s e

for all points X, ¥ ¢ N(4, é) such that ¥ ¢ [[AX) in case (i) and ¥ ¢ (4X)
in cage (ii).

Setting ¥ = 4 in case (i), we obtain immediately that f(X)/g(X) > M
for all X in N (4, §).

In case (ii), for any sequence {@%) converging to 4 we have for
sufficiently large ¢

As before, this gives

1@ 9@\ 1 . 1Q4)
2@~ (1 (Qc)M+g(Qi)
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where {Q¢} is a sequence external to {{;} on which f and g are bounded.

1(@%)
9(€%)

CororLLARY 2. If A has coordinates (a,, a;) where either a, or a, is
one of the symbols oo, —oo then sufficient conditions that f(X)/g(X)—~L
as X >A are provided by using Theorem 1 to show that f(X)/g(X)->L
as X' >A', where X' and A’ are defined as follows. With X: (a,, w,), let
X' (xf,x3) and A': (ai, ai) be given by having, for each i, wj= @: and
a; = ai iff ai 18 finite, while xt = 1/x¢ and a; = 0 iff ay 18 either co or — oo,

Proof. It suffices to show that for a 2-place function ¥, if J]r.:ini ,F (X)

= L, then Jlg'xr}{li' (X) = L. There are 32*—1 = 8 possibilities for 4. Since

the argument is similar for each, we shall just illustrate it for the case
A: (a,—oc0), Then, for given ¢>0, we have 4,6,>0 such that
|B (2, @)—L| < & provided 0 < |m1—a| < 6, and 0 < |v3| < 8,. It follows,
since #{ = #, and wp = 1/m,, that if 0 < |#,—a| < é, and z, < —1/4 then
|F (2, @;)—L| < e. Hence

It follows that as ¢->oo, —00,

lim F(ml,_mg) =L ..
»n—+a
Z>—000
§ 4. Remarks.. (i) It can be shown that if f/¢ has no unique value
a8 X +A from within 8, then L, C L,, where L, is the set of all limit
points of f/¢g and L, is the set of all limit points of f,/g..

(ii) The operator D defined by Df (@1, ;) = 0, /1(2y, @5) + @afa(@y , @) i
a derivation. When f is homogeneous of degree % then Df = &f. Thus
if f and g are homogeneous functions of distinet (non-zero) degrees that
meet the conditions of Theorem 1 with A at the origin, then either
lim(f/g) = 0 or else the limit does not exist. \

(iii) The theorem takes on a particularly useful and simple form
when reformulated in terms of polar coordinates {r, 0y, ..., 6,—,} with
point 4 set at the origin. Then f,= rF,, g. = rG; and f,/g.= Fy/Qr.
Here ¥ and G are the functions in polar coordinates corresponding to
1 and g respectively, #, and G, have their usual meanings with respect
to the polar coordinate r, and limits are taken as r—0 uniformly in the
remaining polar coordinates 6.

(iv) If one knows that the limit of f/g exists, one can readily find
it by applying the familiar one-dimensional form of the theorem along
an appropriate path of approach. Thus in practice the theorem is useful
not so much as a device in computing ].if.l(ﬂg) but to guarantee the

existence of the limit within a given set S, which is starlike with respect
to 4. In some cases, one may actually find the largest set S for which
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the limit of f/g exists, as well as L, of (i), which is always an interval
of the real line.

We give an example. Consider the quotient (2y34-2%2%)/(2*+y3) at
the origin. Thiz seems to fall under case (i) of our theorem, but the
computation there yields an even more complicated quotient. Divide
numerator and denominator by y* to get f/g with f(z,y) = afy+ 2/y
and ¢(z,y)= o*/y*+1/y®. This quotient comes under case (ii) and one
easily finds that f,/g.= 2. Nevertheless, the quotient has no limit at (0, 0),
a8 one can verify by trying the paths y =2 and ¥ = «® One might
suspect, however, that the limit is 2 if taken from within some ‘“nice”
region and indeed a routine working out of the hypotheses of Theorem 1
produces such a region: it is F? with certain open wedges excluded; viz.,
all points (x, ¥) between ¥y = &,y = —&a, for & > 0, arbitrarily small.
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