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Strong maximum principle for non-linear parabolic
differential-functional inequalities in arbitrary domains

by J. Szarsxar (Krakdw)

Abstract. A diagonal system of second order differential-functional inequalities
of the type

(0.1) (e, =) < fi(t, =, u(t, @), ub(t, ), ub, (¢, @), w(t,*)) (G =1,...,m)

is gousidered, where @ = (2, ..., @p)y % = (ul, ..., w?), wl =}, ..., u} ), and uf,
is the matrix of second order derivatives with respect to z. The funection «(t, @) is
defined in an arbitrary open set D < (¢, &1, ..., @) (bounded or not) and by % (¢, *)
= (ul(t, ), ..., w™(f, +)) is meant an element of the spacc of continuous functions

w(t,): Spx—~u(t, z)eR™,

where 87 is the intersection of D with the plane ¢ = f. Three theorems are proved:
Theorem 1 on strong inequalities of type (0.1) (the sign < being replaced by <), The-
orem 2 (corresponding to the maximum principle) and Theorem 3 (corrésponding
to the strong maximum prineciple) on inequalities {0.1). Results obtained are a gen-
eralization of those given in [2]. Some ideas of this paper are patterned on those intro-
duced by P. Besala in [1] and by W. Walter in [3). In the above papers differentinal
inequalities with f? independent functionally on (i, -) were dealt with.

1. Notations, definitions and assumptions. .

AssunrerioNs H. Let D < (8, @y, ..., 2,) be an arbitrary open set,
contained in the zone 0 < 1< T' < - 0o, and let its projection on the i-awmis
be the interval (0, T').

By D, is denoted the subset of those points, (E, z) belonging to the
intersection of D = DudD with the zone 0 < ¢ < T, for which there is
a lower half neighbourhood

t<t, O (g—&)P+{E—H2<r
j

contained in D. It is clear that every point of D belongs to D,.

We denote by 87 (0 < i< T) the projection on the space (z, ..., &)
of the intersection of D, with the plane ¢ = ¢. It is obvious that § Fis
open in the space (2, ..., 2,).
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We denote finally by ¥ that part of dD which is disjoint with D,
and is contained in the zone 0 < ¢t < T and by §, the subset of 9D con-
tained in the plane ¢ = 0.

A point (¢, %) being fixed in D,, 8~ (t, &) will stand for the set of
points (¢, @) e D, that can be joined with (¢, #) by & polygonal line contain-
ed in D, along which the ¢-coordinate is increasing (weakly) from (i, @)
to (¢, &).

Assumprions G, Let X (i =1,...,m) be a subset (possibly empty)
of £ and let a'(t,a) > 0, b'(t,x) =0 (i =1,...,m) be functions defined
on X¥. For (t,x)eZ; be given a direction I'(t, ), so that I' is orthogonal
1o the t-amis and some open segment, with one extremity at (, x), of the straight
Lalf line from (¢, ) in the direction I is contained in D,,.

For a function «'(, #) defined on D,u X and for a point (I, 2)e X
we put

w(t, &+ vers U'(T, #)) — (T, )

_l_);,, w'(F, &) = liminf

T—04-0 T

Let C,(S,) denote the space of continuous functions z = (2(+), ...
veey @(+)) from §; in R™. For the subspace of those z which are hounded
in §; introduce the norm

llell = maxsup {]z*(@)]: weS}.
i

In C,,(S;) the following order is defined: for z =
€0, (8, 3 = (#1("), ..., 2"(+)) eC,, (S,) the inequality = <
that .

'.(zl(. “,zm(_))

) -
(2 < 2) means

. de)<d(m) @F)<F(@) (G=1,...,m).

Let f'(¢,@,u,g,7,2) (i =1,...,m), where ¢ =(gi,..., ) and
* = (ry) is an X " real syznmetric matrix, be defined for (¢, #)eD,, %, ¢,
arbitrary and z¢C,(8;), C,,(8,) being a subspace of C,(S;) containing
bounded functions.

A function u(t, ®) = (v(t, ), ..., w™ (¢, ®)) is called Z-regular in D
if « is continuous in D,uU X} and «, ., u’, ave continuous in D,.

A Z-regula,l; function (¢, #) in D is called Z-regular solution of (0.1)
in D it u(t, +)e0,,(8,) and if it satisfies (0.1) for (¢, &)eD,,.

According to the definition given by P. Besala [1], a X-regular fune-
tion (¢, #) in D being given, the function f*({, z, u, q, r, #) is said to be
uniformly parabolic with respect to wu(f, «) in a subset ¥ < D, if there
is a constant » > 0 (depending on F) such that for any two real symmetric
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matrices 7 = (ry), I = () and for (¢, #)eE we have

(11)  r<r (Y ¢fi(i': @y w(t, o), 152, @), s u(t, ) -
7
"fi(t’ 2, w(t, #), ui(t, ¥), r, u(t, )= MZ (;ﬂ — )
j=1

If (1.1) is satisfied with » = 0, then f* is called parabolic with respect
to w(t, ) in E. '

Sets X7, functions a(t, #), b¥(t, #) and directions ¥'(f, #) satisfying
Assumptions G being given, a funection u(¢, ) = (ur(3, z), ..., w™(t, @),
with 2 continuous in D,UZ}, is said to satisfy sirong (weak) initial and
boundary inequalities of type 1B if
(I) For any sequence (¢, 4")eD, such that £ i3 strictly decreasing

to 0, (¥, 2")—=(0, 3,)eS,, or |2"|—+ co, We have

(1.2) liminf4'(#, 8") < 0 (K 0) (i =1,...,m).
(B) TFor any te(0,T) and for any sequence (%, @")eD,, such that @’
is strictly decreasing to %, (¥, #")—(f, &)X, or [#”]—>+ oo, we have

(1.3) VT, B)u'(F, &) —a' (T, 2) Dyu(F, B) < 0 (K 0) if (T, B)eZ],
and
(1.4) liminfu(f", 2*) < 0 (< 0), if (,8)e NI}, or |o°|>+oo.
-0

2. Lumya. Let w(t, 8) = (wi(t, @), ..., w™(t, #)), with w' continuous
in D,UX}, satisfy sirong initial and boundary inequalities of type IB. Then,
we have the following assertions:

1) There is « 1*<(0,T), so that

(2.1) w(t, )< 0

in the intersection of D, with the zone 0 < t << 1™

9) If for ate(0, T) we have inequalities (2.1) for t = 1 and every xSy,
then there is a t*<(2, T, so that inequalities (2.1) hold in the intersection of D,
with the zone T <t< t*.

Proof. Suppose 1) is not true. Then, there would exist & sequence
(', #")eD, and an index j such that ¢ is strictly decreasing to 0, (", «")—~
—(0, )8y, or |#"|—> 4 o0, and

(2.2) w! (¢, 2") = 0.

(1) This inequality means that D' (rj;— #jx)A7Ar > 0.
ik
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Irom (2.2) follows
(2.3) liminfw! (", 2") > 0,
in contradiction with the assumption that w(t, ) satisfies the strong
initial inequality (1.2).

Now, suppose that 2) does not hold true; then there would exist
a sequence (1", #”)eD, and an index j so that #* is strictly decreasing to 1,
&, 2")—>(,2)eZu(l x S7) or |a'|—+-+oo, and (2.2) is satisfied. Since for
t =7 and ®eS; we have (see the assumption of 2)) inequalities (2.1),
it follows, by (2.2) and continuity of w’(, ) in D,, that (£, #)¢(Z x Sr).

If (1, #)eZ\Z} or |o"|—+ oo, we obtain (2.3) (like in 1)) in contra-
diction with the assumption that w(f, #) satisfies the strong boundary
inequality (1.4). If (I, @)eZ], then by (2.2) and continuity of w’(t, z)
in XJ, we would have '
(2.4) w'(t, ) > 0.

On the other hand, by (2.4) and by the inequality w!(f, ) < 0, satis-
fied for xzeSy, we have

(2.5) Dy’ (%, 2) < 0.
TFrom (2.4) and (2.5), and &', b’ being non-negative, it follows that
(¢, @)w (T, @) —a’ (1, fi‘,’)__l_)”wj(f, z) =0,

in contradiction with the strong boundary inequality (1.3).

3. THEOREM 1 (strong inequalities). .Asswine that

1° fi(¢, @, u, q,7,2) (i =1,..., m) are defined for (t, ®)eD,, where D
s an open set satisfying Assumptions IL, for w, q, v arbitrary and zeé,,,(St);
the funclion f' is inereasing with respect to wt, ..., '™, w'*l, ..., ™, 2.

2% w(t, m) = (u(t, @), ..., u™(t, @) is & Z-regular solution in D of
the sysiem (0.1) and v(t, ) = (vl(t, @)y ...y V" (8, 1)) s @ S-regular solution
in D of the system

(3.1) 'Ui(tim)>fi(t:wav(tim)y"’i(tym)1”§m(t1m)a0(t’ )) (¢ =1,..,m).

3° Sets Z}, functions a'(t,x), V(t, ») and directions U'(t, ») satisfying
Assumptions G being given, the difference w(t, x) —v(t, x) satisfies strong
initial and boundary inequalities of type IB. ‘

4° fi(t, 2, u,q,7,2) (i =1,...,m) are parabolic with respect to
w(t, @) in D,.

Under these assumptions we have

(3.2) u(t, ) < v(t,z) for (i, a)eD,.
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"Proof. By 3° and lemma, the set
{t"<(0, T); u(t, 2)<v(t, 3) for (t, ®)eD,, 0< t< "}

is non-void. Let { be its least upper bound or + oo, if it is unbounded.
The assertion of our theorem is obviously equivalent with the equality

(3.3) t="1T.

Now, suppose the contrary holds true, i.c.
(3.4) t<T.

Then, by the continuity of (t, %) —o(t, #) in D, we would have
(3.5) u(t, v) <o(t, @), (¢ o)eDd,, 0<i<i.

By lemma and 3° and by the definition of 7, there is an index j and
a point ZeS; so that
(3.6) Wi, %) = (T, 7).

From (3.5) and (3.6) it follows that the function (i, #)—v'(f, ®)
attains its maximum in Sy for # = @. Therefore, since Sy is open and the
function is of class C? in S; (see 2°), we have

(3.7) wi(l, &) = vi(t, ¥),
(3.8) ul,(t, ) < vl (1, &).

By 2° 49, (3.8), 1°%, (3.5), (3.6), (3.7) and (3.1), we get successively
(3.9) ul (%, &) < (1, u(t z), wh(t, #), wl(f, #),u(i,))
< f(t, &), ul(. @), vl (1, &) ,u(t,-))
<flt, ,v(t,w),v.?;(i, 7), v (t, &), v(f, ))
< i, 7).
On the other band, by (3.5) and (3.6), the function w/(¢, ) — ' (¢, #),

defined for ¢ in some interval (1, f), attains its maximum at ¢ = i. Hence
we have

z
z, 1

ﬁl

W

') 7’36’ ‘;")’

in contradiction with (3.9). This completes the proof of (3.3).

wi(t, i

4. THEOREM 2 (weak inequalities, maximum principle). Under assump -
tions 1° and 4° of Theorem 1 suppose that

5° w(t, @) is @ Z-regular solution in D of system (0.1), while v(, @)
i8 a Z-reqular solution in D of the sysiem

(4.1) ’Di(t, x) > fi(t, @, v(t, 2), 'v:i:(ty ), "’i.r.(t; x), v(t, ))
(z#=1,...,m).
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6° Sets T, functions a'(t, z), b*(t, x) and directions I'(¢, ®) satisfying
Assumptions G being given, the difference w(t, &) —v(t, ®) satisfies weal
initial and boundary inequalities of type IB.

7° For < u and z—2 bounded we have

(42) f'G,o, v, QyT:z)_fi(t)w"ﬁ; q,'r,?;')
< oft, max(w —u!, |e—2))) (@ =1,...,m),
i
where o(t, y) is continuous and non-negative for t = 0, y = 0 and such that
y(t) = 0 is the unique solution of the ordinary differential equation dy/dt = o
(t, ¥), satisfying the initial condition y(0) = 0.
Under these assumptions we have
(4.3) w(t, z) <v(t,w) for ( D,.

Proof. Fix T* < T and for &> 0, denote by (¢, &) a solution of
the equation

(4.4) dyldt = o(t, y)+¢,
satistying the initial condition
(4.5) y(0,¢e) =e> 0.

Such a solution (not necessarily unique) exists and, for £ > 0 suffi-
ciently small, is defined in the interval [0, T*). Moreover, we have

(4.6) lin:y(t, e) =0 for te[0,T¥).
a(t, y) being non-negative, (¢, ¢) is increasing and hence, by (4.5),
we get
(4.7) y(t,e) =e> 0.
Now, we put
v(t, @) = (¢, B) +U (1, e),

where (¢, &) = (y(t, e) y+.-yY(t, ). Then, we have obviously o, = v,
Vg = Uy BY (4.1), 7° (4.7) we get in D, for ¢ =1,...,m,
(4.8)  ?i(¢, =) = vi(t, ) +dy(t, &)/ dt
= fit, @, 0(8, 2), vL (8, @), 05,(L, @), 0(2, ) +olt, y (2, &) +¢
> it @, v(t, 2) + 3 (2, &), D28, @), D5y @), 00, °) +H (2, &) —
—olt, y(t, e))-{-a(t, y(t, e)) - &
> fi(t, », V(t, @), DL(t, ), Upy (2, 3), D(1,"))-

From (4.7), (4.8) and from the assumptions of Theorem 2 it follows
that for (¢, ) and v(¢, ) all the assumptions of Theorem 1 are satisfied
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with T replaced by T*. Hence
u(t, @) < (t, @) = v, )Ly (t, &) for (3, a)eD,, 0 <t T*,

From the last inequality and from (4.6) we obtain in the limit ine-
quality (4.3) for (¢, 2)eD,, 0<t<< T%. Hence, 7" < T being arbitrary,
(+.3) in D, follows.

5. TuroREM 3 (strong maximum principle). Let Assumptions 1° and
4° of Theorem 1 and 5° 6° of Theorem 2 hold true. Assume, moreover, that

8 fit,m,u,q,7,2) (1 =1,...,m) are uniformly parabolic with
respect to v(t, &) in any compact subset of D,,.

9° If ry =Ty for j #k and = —2 is bounded, then

\fi(t, @y %, q, 7, 2) —fit, @, u,q,7,2)

< o(t) [max (lu! —w|, Ig;—gjt, Iy —75l, k=21 (6 =1, ..., m),
. * J
where ¢(t) = 0 18 continuous for ¢ = 0.
Under these assumptions we have inequalities (4.3) and, moreover,
if for some (1, &)e D, and some index j the equality
'u’j(zy x) = 'Uj(zs 57)
holds true, then
w(t, ») =v(t, @) for (¢, ®)e8 (1, 7).
Proof. Theorem 3 follows from Theorem 2 of this paper by the same

argument which was used for the proof of Theorem 2 in paper [2] (see
remark 2).
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