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On generic chaos of shifts in function spaces

by JOzer PiOREK (Krakow)

Abstract. The paper deals with the notion of generic chaos which was defined in [€]. It is
shown that shifts in some function spaces considered as complete metric spaces are generically
chaotic.

1. Let us recall that a set in a topological space is called a set of the first
category iff it is a countable union of nowhere dense sets and that a set in
a complete metric space with the complement of the first category is said to be
a generic set.

This topological approach may be applied to characterize chaotic beha-
viour of dynamical systems acting on a metric space. (See [6]. Also see [1], for
the other known definitions of chaos.) This way of describing dynamical
systems has been proposed by A. Lasota.

2. Let (¥, o) be a metric space and let {S,} be a semigroup of transform-
ations from V into V. The semigroup may be either discrete (¢eN) or
continuous (t€ R). Let G be the set of all chaotic pairs (&, v) in V2, i.e., of all
(u, v) such that

liminfo(S,u, S,;v) =0 and limsupe(S,u, S,v)> 0.

1= +w [ 3md -]

DEerFINITION. We call the dynamical system {S,} generically chaotic iff the
set G is generic in V2,

INTERSECTION PROPOSITION. Let {S,} be a semigroup of transformations of
a metric space (V, g). Let us fix some a > 0 and suppose that for every T > 0 and
every £ > 0 the sets

Ly, = {(u, v)e V3| inf o(S,u, S,v) < ¢},

t2T

Uy = {(u, v)e V?| supo(S,u, S,v) > a}
t2T

are open and dense in V2 Then {S,} is generically chaotic.
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To prove the proposition it suffices to observe that the “chaotic set”
G contains the intersection of the sets L, ;,, and U, when the index n runs over
the set of positive integers.

In the sequel, it will also be useful to denote by A the function t+—t/(t + 1)
for t > 0. Observe that h is continuous, strictly increasing, subadditive and
maps [0, + o0) onto [0, 1). Hence composing any metric with h we can replace
the metric with a bounded one.

3. Chaos in the space C(R, R). Let V = C(R, R) be the set of all continuous
real functions of the real vanable. For u, ve V let us put

2,(u, v) = maxju(x)—v(x), n=1,2,...,
x| €n

o(u,v) = 27"(hop,)(u, v).
1

"n=

Then (V, ¢) is a complete metric space and the convergence in ¢ is the
convergence on compact subsets of R. Now given ueV and teR, let
(S,u)(x) = u(x—t) for xeR. {S,},cr is @ group of transformations of V. We shall-
prove

THEOREM 1. The dynamical system {S,} is generically chaotic.
Proof. We shall use the Intersection Proposition with a fixed ae(0, ).

(i) For every t20, S;: V-V is a Lipschitzian function. Indeed, for
neN, t >0 and u, veV we have

Qn(S:u0 S‘D) < Qn+[x]+l(usv) and Q(S(us S|v) < 2[']+ lQ(us U)
(here [¢] stands for the integer part of ). Thus we have
(%) Vt>0Vn>030>0Vu, veV: g(u, v) <d=>p(S,u, S,v) < in.

(ii) Ly, are open sets in V2 Indeed, let us fix T>0, e>0 and
(ugs vg) € Lt .. There exist ¢t > Tand 5 > 0 such that o(S,uy, S,vy) < e—n. We
choose & as in (»). Then

a(S,u. S,v) < @(S,u, S,ug)+0(S,uq, S,00)+0(S,0p, Sv) < dn+e—n+in=¢
for (u, v)e V? such that g(uq. u) < 6, o(vy, v) < 6.

(iii) Uy are open sets in V2 Indeed, let us fix T > 0 and (ug, vg)€ Uy
There exist t > T and n > 0 such that o(S,u,, S,v,) > a+%. We choose & as
in (*). Then

a+" < Q(Syuo’ quo) S Q(Slum Slu)+Q(Stu' S,v)+g(S,v, SlvO)
< n+e(S,u, S,v),

thus o(S,u, S,v) > « for (u, v)e V? such that g(u,, u) < 8, g(v,, v) < 4.
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(iv) Ly, are dense sets. Indeed, let us fix T > 0, £ > 0, (4,, vo)e V? and
>0 There is ngeN such that

i 27" < min{é, e}.

n=no+1

Let u, ve V be such that

<
u(x) — uO(x)s lxl nOa
0, x| = ny+1,
<
0, |x] = ny+1.

Functions like these exist by Urysohn’s Lemma. We have

Qo) = Y 27(00)up < Y 27"<8

n=no+1 n=ngt1

and similarly
o(vg, ) < 96.

Let t > max{T, 2n,+2}. Then (S,u)(x) = (S,v)(x) =0, |x| <n, and

e(Su, Sv)= Y 27"(hog)(Su, Sy < ) 27"<e.

n=ng+1 n=na+1

(v) U, are dense sets. Indeed, let us fix T > 0, (uy, vo)eV? and 6 > 0.
There is nye N such that

Yy, 27"<é.

n=np+1

S 3

|| = ng+1,
_ _ UO(X), le S no:
blx) = {2, x| > ny+1.

(One can choose any C > 20(1—20)”! instead of 2.)

We may show, as in (iv), that p(uy, %) <6 and p(vy, 7)) < 6. Let
t = max{T, ny+1}. Then (S,#)(0) =0, (5,0)(0) =2 and
2

-____> s
241"

(ST

08,4, 8,0) = 3, 27"(hog,) (8,4, 5,0) =
n=1

since a < 4. Theorem 1 is proved.
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4. Chaos in the space C'(R, R). Let us fix an integer r > | and let
¥ = C'(R, R) be the set of all r times continuously differentiable functions from
R into R. For u, veV let us put

oh(u, v) = ), maxfu?(x)—v¥(x)}, n=1,2,...,
i=0

Cl,0) = Y 27"(hog))(u, 1).
n=1

Then (V, ¢") is a complete metric space and the convergence in " is the uniform
convergence with derivatives up to the r-th order on compact subsets of R.

For ueV and teR let (S,u)(x) = u(x—t) for xeR. {S}.r is a group of
transformations of V. As in Section 3 we will prove that the dynamical system
{S,} is generically chaotic. We may fix a€(0, ) as above. One can check that
the arguments of (i)-(v) in Section 3 remain valid for the new dynamical system.
There is only a little change in (iv) and (v). Namely, we have to choose the
functions u, v, 4, 7 from C’(R, R), and this is possible since there exists
a decomposition of unity for the set {x: |x| < n,} and its open covering set
{x: |x| < ny+3}.

5. Chaos in the space C!(R, R™). Let V= C!(R, R™ be the set of all
functions from R into R™ with a continuous derivative. For u, ve V let us put

0w, ) = max T (1,00 — v, + W)~ v @), n=1,2,...,

[x|€nj=1

e(u,v)= Y 27"(hog,)(u, v),
n=1

where u = (u,,..., u,), v =(vy,..., v,). Then (V, g) is a complete metric space.
Again, for ue Vand teR let (S,u) (x) = u(x—t) for xeR. {S,}.n is 2 dynamical
system on V and we will prove that it is generically chaotic.

The arguments of (i}iii) in Section 3 may be repeated without change. In
(iv) and (v) we have to define the functions u, v, #, 7 in a new way.

So, in (iv), for T, ¢, uy, vy, 8, 1, fixed as in 3, (iv), let u, ve C* (R, R™) be such
that

<
u(x) — UO(X), |xl nO,
0, x| = ny+1,

_ Jve(x)y x| < m,
vx) = {0, x| 2 ng+1,

where 0 = (0,..., 0)eR"™.



Generic chaos of shifts in function spaces 143

In (v), for T, uy, vy, 8, n, fixed as in 3, (v), let @, 7 C'(R, R™) be such
that

ﬁ(X) = {HO(X)’ lxl s nOa
0, |x| 2 ny+1,

R P e
v 0,..,0), X =n,+1.

(In both the above-mentioned constructions we use a decomposition of unity in
each coordinate separately.)

6. Chaos in the space C*(R, R)x C'(R, R). We put
V= {(e, ¥)| ¢eC*(R, R), yeC'(R, R)},

Q(u’ v) = max {Qz(q)u’ 400)* Ql(ll’u! WI‘)} *

where u = (¢,, ¥,), v = (@,, ¥,), (4, v)e V. (See Section 4 for the definitions of
0% and p!) Again (V, ¢) is a complete metric space. For u = (¢, Y)eV and
teR let

(Su)(x) = (p(x—1), y(x~1t)) for xeR.

Then {8 }r is 2 dynamical system on Vand we will prove that it is generically
chaotic. It is obvious that {S} is a product flow built of flows in C?
and C', respectively, as in Section 4 with m = 1. Thus it suffices to repeat
twice, for each coordinate of the product, the constructions of the functions wu,
v, 4, v in (iv) and (v).

We may summarize the results of Sections 3-6 in the following theorem.

THEOREM 1. The shift groups in the spaces of continuously differentiable
functions from R into R™ are generically chaotic in the metric of uniform
convergence on compact Sets.

7. Chaos of Bernoulli shifts, It is well known that the so-called Baker’s
Transformation is a2 mixing ([2]). So we can say that this transformation is
chaotic in the sense of ergodic theory. One can also easily prove that Baker’s
Transformation is isomorphic with the shift in the set of two-sided sequences
of O’s and 1's. We shall generalize this example and prove that the so-called
Bernoulli shifts are generically chaotic. We shall treat Bernoulli shifts
in the topological context and not in the measure-theoretical one. (See [5], e.g.)
Let us notice that Bernoulli shifts as K-systems are also mixings (see [3],

(51 (7))
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Let us fix a positive integer N =2 and real numbers p; such that

O0<p;<l (i=1,. N),Zp,—lLetao—O a, = Zp,fork—l , N.
i=1

Further, let us define recursively a family of sets 4, = {ag” ., af}. Namely,
let

A, ={aqg,-.., ay}, e, a‘”:ai for i=0,..., N,

Ay ={a? +afaf"—af® ) i=1,...,N, j=0,...,N}, n=12,..,

and the points of A, are ordered mcreasmgly from af*"V =0 to afil =

Let us observe that # A4, = N"+1, n=1,2,... Let us put K = [0, l)2
and d(P, Q)= [x,—x,|+|y,—y,l for P(x,, y,), Q(’*zd’z) in K. (K, d) is
a metric space.

We define a transformation 1: K— K in the following way:

t(x, y) = (x, ¥'), where x' = (x—a;-)p Y, Y =py+a-,
for xe[a,_, a), i=1,..., N and ye[0,1).

The function 7 is one-to-one and maps K onto K. It is easy to see that, [or
n=1,2,...,1: K\A,—K is one-to-one and continuous. It is also easily seen

that K\A is a dense subset of K, where A = (] 4,. Let us put K, = K\A4.
n=1
Now we are going to construct an isometric model of the system (K, d, 1)
which we shall call the Bernoulli shift.
Let B* be the family of all two-sided sequences with values in the set

{0,1,.... N—1}, ie,
B* = {(a‘)iezl aiE{O, 1,..., N—l}, IEZ}

Let B be the set of those sequences in B* which have neither left nor right
period built of the sign N—1. We define a map o: B— B such that for
a=(t)cz€B and f=(f).z€B we put

0’(0!)‘.= ﬁ iff ﬁl' =041 fOl‘ ieZ.

Thus o is the shift to the left on B.

Now, let (x, y)eK,. We put x = 0,0p0,0,... and y = 0,0_,0_,0_,...,
where the right-hand sides stand for the expansions of the numbers x, y,
respectively, in the “weighted” digital system with the base N and with the
weights p,..., py. (That is to say, ag =i il xe[a;, ¢j1,), then o, =j if
xe[a;+(a+)— a;)a;, a;+(a;+1—a)a;s,), and so on. The expansion of y is
defined similarly.)

Further, let us define a map ¢: K, » B such that

o(x, y) = (a)ez for any (x, y)eK,,

where a; (ie Z) are the digits of the expansions of x and y obtained in the way
described above.
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It is easy to see that ¢ is well-defined, one-to-one and maps K, onto B and
that oot = ooo, ie, that the following diagram commutes:
K, 5K,
ol e
B 2B.
More generally, we have: pot" =gd"0p for n=1,2,...
By means of the map ¢ we transport the metric from K, to B setting
o(e, f)=d(p ™ («), @~ (B)) for @, e B. One can see that (B, g) is a metric
space, 0: B— B is a bijective continuous map and ¢: K, — B is an isometry.
Thus (K, 7) and (B, o) are isometrically isomorphic dynamical systems.
We call the system (B, o) we have just constructed the “Bernoulli shift”.
Now we shall prove

THEOREM 2. The Bernoulli shift o is generically chaotic on B (in other
words: the map 1 is generically chaotic on K).

Proof We may compute either in K or in B and we are going to choose
the context so as to make computations simpler. Let us fix Ae(0, min p). For
n=1,2,... and e>0 we put LeisN

L,.= {(o PeB’| lfgfa(a"(a). a*(B)) <&}
= {(P, Q)eK?| infd(*(P), *(Q)) < ¢},
kzn

U, = {(a, f)e B?| supo(d*(a), a“(B)) > A}

kzn
= {(P, Q)eK}| supd((P), T*(Q)) > 4},
k=n
where o = @(P), f# = ¢(Q) and the set equalities are to be understood in the
sense of the isomorphism .
By the Intersection Proposition it suffices to prove that each of the sets
L,., U, is open and dense.

(1) First we shall prove that the sets L, , are open. Indeed, let us fix n > 1,
£ >0 and (P,, Qy)€Ly,,. There exist n€(0, ¢) and an integer k = n such that
d(*(Py), T(Q,)) < £—n. Since t* is continuous, there exist neighbourhoods E,
F of P,, Q. respectively, which are disjoint from A, and such that

d(t*(P), 7*(Py)) <3n for PeE and d(*(Q), 7(Q,)) <3n for QeF.
Then, for (P, Q)e Ex F, we have '

d((P), (Q)) < d(e(P), T(Po)) +d(c*(Po), T(Qo)) +4(+(Qo), *(Q)) < &
and, consequently, ExF c L, .

(i) In order to prove that the sets U, are open let us fix n > 1 and
(P,, Qo)eU,. There exist >0 and an integer k>n such that



146 J. Pidrek

d((Py), T(Qy)) > A+7n. Choosing the neighbourhoods E, F as in (i) we obtain
ExFcU,

(iii) To prove that the sets L,, are dense, let us fix n>1, £>0,
(@° B%eB*> and §>0. There exists an integer k,>1 such that
(max p)° < imin{e, 6}. Let us put, for ieZ,

1€iEN
Y= {a?, i <ko o _ {ﬂ?, il < ko,
£ li(modN), lii>k,, ' |i(modN), |i| > kg,
and let o = (¢)icz, = (B)iez- Then (2, f)e B> and o(a®, @) < 3, o(f° f) < 6.
Further, let k > max{n, 2k,+ 1}. Then af = B} for |i| < k,, where (a); = o*(a),
(BY); = d*(B). Thus g(d"(x), ¢*(B) <.
(iv) In order to prove that the sets U, are dense, let us fix n> 1,
(@° B%)eB? and & > 0. There exists an integer k > n such that ( max p)* < 3.

For ieZ, let us put 1<i<N
i lil <k,
of il <k ;
g = i ’ = kmodN, l=k+1,
“ {i(modN), i >k, Pr= ) mod)

i(modN), il >k, i# k+1,

and let & = (&)ez, B = (B)ez. Then (& P)e B2 and o(e°, & < 5, o(B°, B) < 6.
Further,
o(c*(@), 6*()) = min p,> 4.
ISi<N

Theorem 2 is proved.
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