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Abstract. In this paper we consider the infinite system of integral equations
?
(1) zi(t) = pi(O)+ [fit, 8, 21 (8)s @p(5), .. )5 (6 =1,2,...),
0

where ¢ belongs to a compact interval [0, @] and p;,2;, f; are functions with values
in a Banach space E;. We prove that under suitable assumptions the set of all con-
tinuous solutions of (1) is a compact K, in the Fréchet space C ([0, a], B, x B, X ...)

Let J = [0, a] be & compact interval in R and let E; be a Banach

space with the norm |-|; (¢ =1,2,...). We introduce the following
notation:

E =FE,xE,;x ... — the Fréchet space of all infinite sequences
z = (z;), z; € B, for i =1, 2, ..., with the paranorm

SES
lz| = Z—; . —3
= 2 1 5 ||l

C; = C(J, E;) — the Banach space of all continuous functions wu:
J—E; with the norm |jul,, = sup {ilu(t)i;: t €J};

¢ =C(J, E) — the Fréchet space of all continuous functions u:
J—FE with the paranorm |u|, = sup{lu(?)): teJ};

a;, a, a, — the measures of non-compactness in E;, E, C, respec-
tively (Kuratowski [6], p. 318).

Assume that for each positive integer i:

1. p,: J—E; is a continuous function,

II. (¢, s, 2)—>f;(t, 8, x) is @ mapping of theset {0 <s<i<a,z e E}
into E;, which satisfies the following conditions:
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1° for any fixed # € F and ¢ € J the function s— f;(¢, s, «) is strongly
L-measurable on [0, ?];

2° for any fixed ¢, s, 0 < 8 <1< a, the function v—f,(¢, s, #) is con-
tinuous in E;

3° there exist real-valued functions (¢, s)—>m,(t,s8) and (z,t,8)
—=>7;(t,1,8) (0<s<t<T<a) such that

(i) for any fixed t, v the functions s--»7,z, ¢, s) and s->m,l, s) are
L-integrable on [0, t];

(ii) sup {lf:(7, 8, ®) = fi(t, s, 2)|l;: € B} < 747, t, 8) and sup{||fi(2, s, z)ll;:
ze B} <myl, s),

(ii1) lim [f'm,i T, 8 ds—}—ff‘ 7, t, sds]—O for fixed £ or 7.

t—i—>04 ¢

IIL. o (f;(¢,[0, 1] x X) ) h(t, a(X)) for each teJ and for every
subset X of E, Where h: J XR +—>R + is a Kamke function, i.e., k satisfies
the assumptions:

1° for any fixed ¢eJ the function z—h(?,2) is continuous and
non-decreasing on E _ ;

2° for any b > 0 there exist real-valued functions t—m(t) and (z, ?)
->r(t,t) (0 <t< < a) such that

sup {|k(f, 2) —h(7,2)]: 0 <2<<b} < (7,1),
sup{h(t,2): 0 <2< b} <m(),
and

Iim [(z—t)ym(z)+tr(z,t)] =0 for fixed ¢ or t;
T—{>0+

3° for any ¢, 0 < g < a, the function identically equal to zero is
¢

the unique continuous solution of the integral equation 2(t) = [k (¢, 2(s))ds
defined on [0, q]. 0
We consider the infinite system of integral equations

t
(M) w0 = n:(O)+ [£ts 5, 2.(5), @als), .. )ds  for ted,i=1,2,...,

where f denotes the Bochner integral.

THEOREM. The set 8 of all continuous solutions of (1) is a compact
R, in C, i.e., 8 is homeomorphic to the intersection of a decreasing sequence
of compact absolute retracts.

Proof. Let us fix a positive integer ¢. Put

t
Fi(@)(t) = p:(t)+ [filt, 8, @(s))ds for e C and tedJ.
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Fix ¢, € J. For any « € C and { € J we have

1Fe () (8) — Fy (@) (to) s < 124(8) — Dy (o)l + f £ty 8, 2(8))]sds +
t
+ f 1£:{ts 85 @(8)) —fi(to, &, @())]|eds
b
< llpa(8) — ps (to |]i+fm (ty 8 ds—l—f (tyto, 8)ds  when ¢>t,,

and
)

1P (@) (2) — Fs(®) (to)lls < I1ps(8) — B3 (Lol + f my (o, 8)d8 +- f ri(to, 1, 5)ds

when ¢t < t,. By II. 3° and by the continuity of p,, it hence follows that
lim F,(z)(t) = F}(x)(t,) uniformly in z e C, which proves that F,(C)

‘—Pto

is an equicontinuous subset of C;. Since J is compact, this implies that

the set F;(C) is equiuniformly continuous, and therefore the numbers
w;(d) = sup {|lu(t) —u(s)l;: uwe F;(C),t,sed, t—s|<d}

tend to zero as d—>0--.
Assume that 2", 2 € C and lim|4" — 2|, = 0. Since

n—>00

llmfi(t s, a"(s)) = f;(t, s, x(s)) and

\f: (2, 5, 2"(s)) fi t, s, o(s))|li < 2my(t,s) for each 0 <s<i<a,
the Lebesgue theorem shows that

¢
limf”f‘(t, s, 7*(8)) —fi (¢, s, m(s))-]l,-ds =0,

hmFi(m") (t) = Fy(x)(t) for each t €J, and hence, by the equicon-
tmulty of F,(C), lim ||Fy(2") — Fy(x)l; = 0. This shows that F, is & con-

n~—>0o00

tinuous mapping of C into C;.
Consequently, the mapping F: C—C, defined by

F(z) = (Fy(), Fy(x),...) for zeC,
is continuous. Let

w(d) = sup{|u(t)—u(s)|: wueF(C),t,sed, [t—s|<d}.
Since

d
w(d) \Z = -1+( ) and  limw,(d) =0 for eachs,

“— w;(d) a0

we see that w(d)—0 as d— 0.
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We shall prove that

2) If v»eC,n =1,2,..., and lim|p"— F(o")|, = 0, then (v*) has
@ convergent subsequence. "%

Suppose that v"e(C,n =1,2,..., and
{3) lim |v* — F(v")], = 0.

n—=00

Put V={@":n=1,2,...} and V() = {u(t): w e V} for t eJ. Denote
by I the identity mapping on C. From (3) it follows that (I — F)(V) is
an equiuniformly continuous subset of C. Since

(4) Ve(I-F)V)+F(V),

and the set #(V) is equiuniformly continuous, the set V is also equiuni-
formly continuous, so that the numbers

w(V,d) =sup{lu(s)—u@): ueV,t,sed, |t—s| <d}
tend to zero as d—0. Because
fu(t) — 2t < Ju(s) —2(s)| +2w(V, |t—s|) for u,2€V and ¢t,8¢ed,

we get
la(V (1) —a(V(8))| < 2w(V, |t—s]) for t,sed,
and therefore the function t—v(t) = ¢(V(?)) is continuous on J.

For fixed teJ we divide the interval [0,?] into n parts 0 =1,
<t <..<t, =tinsuchawaythat 4%, =1, —1%,_;, =t/nfork =1,...,n.
Let V(t_1,t) = {u(s): vueV,t,_,<s<{t}. Using the same argument
a8 in the proof of Lemma 2.2 in [2], we can prove that

a(V(tk_l, tk)) = Sup{a(V(s)): tk—l <8< tk} .
Hence, by the continuity of », there exists s, € [¢,_,, #,] such that

(6) a(V(tk—I; tk)) = 0(8).
Further, by the mean value theorem ([1]; Theorem V. 10.4), we obtain
n ty
Fy)(t) = ps()+ Y [ filty s, @(s))ds e py(t) +
k=1!k_l

+ Z At conv fi(t, [t_1y 4] X V (b, t,,)) for each z e V,
k=1

and therefore
F (V)() = p; (1) + E, At convf,(t, [0, 1] X V(i,_,, 1)),
k=1

where F,(V)(t) = {F;(@)(t): ve V} By III, (5), and the corresponding
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properties of a; (cf. [2]), it hence follows that

-

a(F,(V)(1) < Y dtafconvfi(t, [0,8] X V(ti_y, 1))

k

I
-

l
s

A fift, [0, 8] X V(tee,y 1)) < D) Ath{ty @ (V (tny 1))
k=1

&
|
-

P

At h(t, v(sy)) .
k=

n t
But if n—oo, then 3 At ht, v(sy)— [ h(t, v(s))ds. Thus
k=1 0

[

¢
(6) o(Fy(V)(1) < [ hft, v(s))ds  for i =1,2,...
0
Now we shall show that
o 1 as(4,)
» A XA, X..)< Y =k
) a(4; X4y %....) ;12‘ et

for any sequence of bounded sets 4, < E; (1 =1,2,...).
Let A = A, xA4,%x ... and ¢> 0. For any ¢ there exists a finite
family of sets (By);-,,...,n, Such that

ng
A;c U By and 6By < a(4y) te.
B
Choose a positive integer % such that 1/2* < e. The family of sets B; . ;.
= By X By, X ooo X By, X Ap 3 X Apip X oo (1<Ji S0y, 000y 1 < e < M)

is a finite cover of A. Moreover,

k x

. 1 8;(B;;) 1 6;(4,)
a ) < _ . 3 —_——
(Bfl ----- ?k) = «;1 2° 1 +ai(BiJ'i) i=k+1 2 146(40)

k (] k
1 “ a; (Ai) + € v 1 1 a"(Ai)
+ Y o< D rm i

S 2T Trad)+ of 2t 1+ a,(4,)
i=1 Cl,;( ¢ € t=k+1 t=1 % ¢
k )
-‘1 & 1 1 a,;(A,)
= Z< ) = 2
T 25 Tre ToF Zz@ Trady) T

Hence
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Since the last inequality is satisfied for every ¢ > 0, we get

O 1 a;(4,)

ST Ty

1,=

From (6) and (7) it follows that

fh(t, v(s))ds
L+ a(F(V)(®) 28

1l aF (M) N\l
a(F(V)(t))S;?. <i=l E 1+J!h(t;”(3))ds

{
gfh(t., v(s))ds.

On the other hand, from (3) it follows that lim|v"(#) —F (") ()| = 0,

n—00

which implies a((I—F)(V)(t)) = 0. Consequently, by (4), we obtain

a(V(t)) < a((I—F)(V)(t)) —l—a(F(V) @) = a(F(V)(t)),
go that

¢
1) < fh(t, v(s))ds for ted.

Applying now Theorem 2 of [3], we deduce that v(f) = 0 for each ¢ eJ.
In the same way as in the proof of Theorem 2.3 in [2], we can show that

a,(V) = sup{a(V(?)): teJ} =0.

From this we conclude that the sequence (v*) has a convergent subse-
quence, which settles (2).
For any positive integer n write a, = a/n and

»(0) for 0 <t<a,,
F(x)(t—a,) for e, <t<a,

@) - |

for each z € C, where p(0) = (p,(0), p:(0), ...). Obviously, F* is a con-
tinuous mapping C—C and

| () — F (), < w(a,) for every zeC.

Let T =I—F and T" =I—F". Then T, T" are continuous mappings
C—C and

lim|T"(x)—T(2)], =0 uniformly on C.

n—-00
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Fix n. Assume that y € C. We define a finite sequence (%), & =1,
2, ..., n, of continuous functions by the formulas

@ (t) = y (1) + p(0) for ted,
+py — {"Dk(t) for 0 <t < ka,,
(t) = y(t)+F(2*)(t—a,) for ka,<t<a.

It can easily be verified that
ab(t) = y(@) + F(a*)(t) for 0<t<ka,, k=1,...,n,

and consequently T™(x") = y. Conversely, if T"(z) =y and x € C, then
x(t) =a*(@) for 0<t<ka,,k=1,...,n, and therefore x = z® This
proves that T™ is a bijection C—C.

Now assume that lim|T™(u) — T (u)|, = 0, where w", % e C. Because

jroo
!l (t) = T(u?)(8) +p(0) and () = T™(w)(t) +p(0) for 0 <t < a,, limui ()
= %(t) uniformly on [0, &,]. Further, F>eo

wW(t) = T"(w) () +F(v)(t—a,) and u(t) = T"(u)(t)+F(u)(t—a,)

for a, <t < 2a,,

and
IimF(w)(t—a,) = F(%)(t—a,) uniformly on [a,, 2a,].
F>00
This implies
lim%’(t) = «(f) uniformly on [0, 2a,].

j—e0
By repeating this argument, we infer that limw(f) = (i) uniformly on
. §=>00
[0, ka,] for k =1, ..., n, ie., limu = % in C. This proves the continuity

j—>o0
of (T™)~'. Therefore T" is 2 homeomorphism C—-C.
Hence, applying Theorem 4 of [9], we conclude that the set 77 '(0)
is a compact R,. It is clear that S = T~!(0), and this ends the proof.

References

(1] A. Alexiewicz, Functional analysis (in Polish), Warszawa 1969.

[2] A. Ambrosetti, Un teorema di esistenza per le equaziont differenzialt neglt spazi
di Banack, Rend. Semin. Mat. Univ. Padova 39 (1967), p. 340-360.

[3] N. V. Azbielev, Z. B. Caluk, On infegral inequalities (in Russian), Mat. Sb.
56 (1962), p. 325-342.

[4] A. Cellina, On the existence of solutions of ordinary differential equations én
Banach spaces, Funkeial. Ekvac. 14 (1971), p. 129-136.

{6) M. Hukuhara, Sur Uapplication qui fail correspondre a un point un oontinu

bicompact, Proc. Japan Acad. 31 (1955), p. 5-7.



194 S. Szufla

[6] K. Kuratowski, Topologie, vol. 1, Warszawa 1952.
[7] K. L. Persidskil, On the stability of solutions of a countable system of differential
equations (in Russian), Izv. AN Kaz. SSR, ser. mat., mech. 2 (1948), p. 3-34.
[81 — Oountable systems of differential equations and the stabilily of their solutions
(in Russian), ibidem 7 (1959); 8 (1959); 9 (1961).
[9] 8. Bzuifla, Solutions sets of mon-linear equations, Bull. Acad. Polon. Sci., Sér.
Sci. Math. Astronom., Phys. 21 (1973), p. 971-976.
[10] A. N. Tikhonov, On infinite systems of differential equations (in Russian), Mat.
Sb. 41 (1934), p. 556—560.
{111 G. Vidossich, On the structure of solutions sets of non-linear equations, J. Math.
Anal. Appl. 34 (1971), p. 602-617.

Regu par la Rédaction le 25. 10. 1977



