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Abstract. Let S(4, M) be the family of injective holomorphic mappings of the unit disc
4 < C into a complex manifold M. Following the method of the Kobayashi—-Royden
peudodifferential metric K, and using the family S(4, M), the author introduces a new
pseudodifferential metric Sy on the complex manilold M and studies some basic properties
of this metric. The metric S, has a distance-decreasing property under injective holomorphic
mappings and coincides with the Carathéodory—Reiflen and Kobayashi-Royden differential
metrics on any bounded symmetric domain. One of the interesting features of S, is that
it is larger than or equal to K, but differs from K, on some .spaces. For example, Sy
defines a complete proper metric on M = C—{0}, while Ky is trivial. More generally. Lhe
n-dimensional complex projective space P,{C) minus -(n+1) hyperplanes in general position
is hyperbolic with respect to S-metric, but the space P,(C) minus n hyperplanes in general
position is nol. An immediate consequence of this fact is that every injective holomorphic
function in C™ must take every complex number. Other peculiarities of the metric S, are
also given.

1. Introduction. Let (4, M) be the family of (1-1) holomorphic map-
pings of the unit disc 4 < C into complex manifold M. In this note we
introduce, using the family %, a new pseudo-differential metric S, analogous
to the Kobayashi-Royden pseudo-differential metric K. and study some
basic properties of this metric. The metric Sy has a distance-decreasing
property under (1-1) holomorphic mappings .and coincides with the Carathéo-
dory-Reiffen and Kobayashi—-Royden differential metrics on any bounded
symmetric domain. One of the interesting features of S lies in the fact
that it is larger than or equal to K, but differs from K,, on some spaces.
For example, Sy defines a complete proper metric on M = C — {0}, while
Ky is trivial. More generally, the n-dimensional complex projective space
P,(C) minus (n+ 1) hyperplanes in general position is hyperbolic with respect
to S-metric, but the space P,(C) minus n hyperplanes in general position
is not. An immediate consequenee of this fact is that there is no (1-1)
holomorphic mapping of C™ into P,(C) minus (n+ 1) hyperplanes in general
position.
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2. Preliminaries. Let M be a complex manifold of dimension n and T (M)
the complex tangent bundle on M. Following Grauert and Reckziegel ([1]),
we define a differential metric on M by an upper-semicontinuous function

Fu: T(M) > R* U {0}
such that for each (z, {) e T(M)

(1) Fy(z, A8) = [A|Fp(z,8), AeC,
and
(2a) Fu(z,&) >0 for & #0.

We say that Fy is a pseudo-differential metric if, instead of condition (2a),
it satisfies '

(2b) Fu(z,8) 20 for (z,§)e T(M).

The Carathéodory-Reiffen and Kobayashi—-Royden pseudo-differential
metrics are two well-known examples of pseudo-differential metrics.

Let H(M, A) be the family of holomorphic mappings of M into 4.
The Carathéodory—Reiffen metric (CR-metric) is defined by

(3) Cu(2,¢) = sup {|ldf (2)¢]: feH(M, A)3 f(z) = 0}
({6]), while the Kobayashi—Royden metric (KR-metric) is
(4a) Ky(z,&) = inf {jv|: 3feHA,M)3f(0) =z f'(0)v = &}

(L7]). where H{(A, M) is the family of holomorphic mappings of 4 into M.
In terms of a differential metric Fy, the KR-metric may be written in
the form:

. Fyu(z,¢)
wor - Ru 8 =l { Fu(/00).7°(0)
If, in (4b), Fy is replaced by C,, then
(5) Ku(z,8) 2 Cu(z,8), (2,83 T(M).

For,
()  Cu(f(0).1'(0) = sup {{dg(f(0) /' (0)): ge H(M, 4)3g(2) = 0}

= sup {|d(gof)(0): gofe H(4, 4)3(gof)(0) = 0} < 1,
by the classical Schwarz lemma on gof.

- 3feH(4, M)3f(0) = z}.

3. Basic properties of S-metric. Let ¥ (4, M) be the family of (1-1)
holomorphic mappings of 4 into M. Analogous ‘0 the KR-metric, we define

(7) Sulz, &) = inf{[o]: Ife L (4, M)3f(0) = z, f'(O)v = &)

- mf{ FM(Z?é)
Fu(f(0),1(0)

:dfeS (4, M) f(0) = z}
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for (z, ) e T(M) and for any differential metric F); on M. Using the argument
of H. Royden ([7]) we see that Sy is a pseudo-differential metric. Further-
more, Sy satisfies the following:

ProrosiTION 1. Let f: M — N be a (1-1) holomorphic mapping of M into
another complex manifold N. Then

Sv(f(2),df(2)8) < Su(z,8), (2,8 e T(M).
If, in particular, f: M — N is onto, then
Sn(f(2), df (2)¢) = Sm(z, d).
ProrosiTION 2. For any complex manifold M,
Ku(z,8) < Sul(z,0), (2.8)eT(M).

Let z and w be any two points in M. As usual, we define the integrated
metric by

(8) S'mlz,w) = inf [ Sy (z, dz),
where the inf runs over all piecewise regular curves y joining z and w in M.

Following S. Kobayashi ([3]), we define a pseudo-distance 1y on M as
follows: For any two points z and w in M, choose a chain of points

2 =12g,21,.-,2, =w of M, points a,,...,a, by,...,b, of A, and functions
_f]s"'aﬁce'y(A, M) SUCh that
fila) = z;_, and fi(b) =1z, i=1,2,..., k.
Then
k
(9) ™ (Za W) = inf Z @4 (aisbi)’
i=1

where the inf runs over all possible chains of the points connecting z and w
in the manner described above and g, is the Poincaré metric on 4. Then 1y
is an inner metric in the sense of Rinow, ie., 1)y = &y, as it easily follows
from the method of Royden ([7]).

We note that the notion of pseudo-differential metric may as well be
defined on a domain D in any infinite dimensional normed linear space X
exactly in the same way as before.

We state the following theorem in a general normed linear space setting.

THEOREM 1. Let B be the unit ball in any normed linear space X which
is homogeneous. Then

(10) Sa(z,8) = Kp(z,8) = Cp(z,8), zeB, {eX.

In particular, (10) holds for any bounded symmetric domain of finite dimension.
Proof. By the Schwarz lemma, for all fe.¥(4,B) with f(0)= 0,
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|f'(0)} < 1, where | | denotes the norm in X. See [2] for example. Hence,

e
o] = 7O = ¢

for all fe.¥(4,B) with f(0) = 0 and f'(0)v = &. Therefore,

S5(0,¢) = [&].

The mapping h(z) = (x/|x|])z, xe B, x # 0, belongs to ¥ (4, B) and satisfies:
h(©) = 0, W (0) = x/|x|. Since | (0)v| = || implies |v]| = |£|, we have

(11) S50, &) = (&l
Here h(z) serves as an extremal map. So,
(12) S50, &) = Kp(0,¢8) = C5(0,¢&) = [¢].

Since B is homogeneous, any point of B can be mapped by a (1-1) holo-

morphic mapping to the origin. By the invariant property of Sz, Ky and Cy,
we have

(13) SB(zvi) = KB(ZaC) = CB(za C)a ZGB, éEX

Equalities (13) hold for any bounded symmetric domains of finite dimension
when we observe that the homogeneous unit ball of any normed linear

space includes all bounded symmetric domains of finite dimension including
two exceptional cases.

In spite of this similarity of S, and K,,, these two metrics behave
differently.

Let M = C—{0}. Since C is a covering surface of M, Ky(z,&) =0

for (z,{)e T(M). On the other hand, Sy is not identically zero. In fact,
we have

THEOREM 2. Let M be any domain in C with M # C. Then
(14) Su(z, &) = |€)/4d(2)
and the integrated metric ¥y satisfies:
d(z,)
£ 0(z,)

where 8(z) denotes the distance from ze M to C\M. Furthermore, ¥y is
a complete metric.

Proof. Since M is a proper subset of C, §(z) is finite for every ze M.
It is well known ([5]) that if f is a (1-1) holomorphic mapping of 4 into C,
then for ze 4,

(16) HA =21 () < dist(f(z2), o (4)).

In particular, for z = 0,

(15) Fulzi,zy) = Lo

) Zl,ZZEM,
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(17) $70) < dist (£(0), 9 (4)).
If f(0) = z, then
(18) 1 1
L/ (0)| T (z)
and, hence,

(19) Sul(z, &) = inf{ lfl’é(l())l : fe L (4, M)3f(0) = z} > [¢)/46(2).

Therefore, the integrated metric satisfies
|dz|
46(z)°

where the inf is taken over all piecewise regular curves y connecting z,
and z, in M. Since

(20) Fum(zy, zy) = inf _f Sm(z,dz) = lnf_[

|2y — 25| 2 10(z)—6(z,)l

for any z, and z, in M, we have

dé (z)
21 dz 1.
TherefoEe,
48(2) d&(z) 4(zy)
(22) Fm(zy,2) 2 }in fj 5(2) ;( > %‘ 5(22)

which completes the proof.

COROLLARY 1. There is no (1-1) holomorphic mapping of C into itself
which omits at least one point.
Let M and N be two complex manifolds. Applying the distance decreasing

property of CR- and KR-metrics to the projections p: MxN -+ M and
g: MxN - N, we have

(23) Cuxny =2 max (Cy, Cy)
and
(24) Ky xny = max (K, Ky).

The opposite inequality also holds for the KR-metric. In fact, we prove:
LEMMA 1. Let M and N be two complex manifolds. Then

(25) Kuxy < max (Ky, Ky)
an_d

(26) SMXN £ max (SM,SN).
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-Proof. Let Fy, and F, be differential metrics of M and N, respectively.
Then max (Fy, Fy) defines a differential® metric on M x N. Therefore, for
each (z,w)e M x N.

- max {Fy(z, &), F(w, n)} :
max | Fy (£(0), £/(0)). Fy(g(0). g’ (0)))

dh =(f.9)e H(4, MxN)3h(0) = (Z,W)}

27 Kyxw((z w),(&.n) = inf{'

for (¢(,m)e T,(M)x T, (N). Let ¢ > 0. By the definition of K, (z, &) there
exists an f,e H{(4, M) with f,(0) = z such that

FM (29 é)
Fu(£1(0), £1(0)

Similarly, there exists a g, € H(4, N) with g,(0) = w such that

(28)

< Kpy(z, &) +e.

(29) Fy(w.n)
Fy(g:1(0), ¢/ (0)

Therefore, there exists an h, = (f;,g,)e H(4, M xN) with h,(0) = (z, w)
such that

Kyx(w,n)+e.

max {Fy(z, £), Fy(w, )}
max {Fy (f,(0), £{(0)), Fx(g,(0), g (0))}"
gmaX{ FM(Z,{) FN(W,'?) }
Fu(f1(0). f{(0)) " Fx(g,(0), g1 (0))
< max {Ky(z, &) +e, Ky(w,n)+¢)

(30)  Kumxn((z, w). (&, ) <

[or every ¢ > 0. This proves (25). It is clear that the same argument works
for Sy «y when the family H(4, M x N) is replaced by .¥ (4, M x N).

It is not likely that the same inequality in Lemma 1 holds for the
CR-metric. Combining (24) and (25), we have

COROLLARY 2. Let M and N be two complex manifolds. Then
Ky xny = max {Ky, Ky}.

The same result is, however, not true for the S-metric. It can be shown
by the following example: Let M = C—{0} and N = C. Then K, = Ky
= Sy = 0 and Sy (z,¢&) = || /46 (z). Therefore,

(3D max (Su, Sy) ((z, w). (£, ) > 1&]/43 (2).

But, Sy.x=0. To see this, let (z,w)e MxN and (&, n)eC? Let
h,e (4, M x N) be given by

(32) ha(2) = (fus 90} (A) = (2€™, ni+w), ZLed.
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Then h,(0) = (z,w) and h,(0) = (21tiz, n). From definition,

(33)  Suanlz W), (€ n) < [ i
JIL O +lgOF  /4n?|z? +n?

which shows: Sy, .y = 0. But, we can prove:
THEOREM 3. Let M and N be two complex manifolds. Then

(34)  min [max {Ky, Sy}, max {Sy, Ky}] < Syxny < max {Sy, Sy}

Proof. The second inequality of (34) was proved in Lemma 1. Therefore,
we only need to prove the first inequality. By definition,

max {FM(Z, f)a FN(W9 '1)}
sup max {Fy (f(0), f7(0), Fx(9(0).4'(0)} °
where the sup is taken for (f, g)e ¥ (4, M x N) such that (f, g)(0) = (z, w).
For (f,g)e ¥ (4, M x N), the following three cases are possible.
1° fe¥#(4, M) and ge ¥ (4, N);
2 fe¥(4,M) and ge H(4, N);
¥ feH(4, M) and ge ¥ (4, N).
Case I°. Replacing Fy by Sy and Fy by Sy in (35), we have
SMXN((Za W'), (‘{::" rl')) ; max {SM (Zs 6)’ SN (Wv r’)}
Case 2°. Replacing Fy by Sy and Fy by Ky in (35), we have
SMXN((Z7 W‘), (é) rf)) Z max {SM (29 C)y KN(Zs ’7)}
Case 3°. Replacing Fy by K and Fy by Sy in (35), we have
SMXN((Z: w). (&, ’1)) = max {KM(Z, &), Sn(w, ’1)}-

In any case we have the first inequality of (35), since Sy = Ky and Sy = Ky.

(35)  Swxn((z,w), (&, 1) =

4. Hyperbolicity in S-metric.
DEFINITION. Let M be a complex manifold furnished with a pseudo-
differential metric F,,. M is said to be hyperbolic with respect to Fy, if for

each z, € M there exists a neighbourhood U(z,) and a constant ¢ > 0 such
that

(36) Fy(z, &) = c|é]  for zeU(zy) and ¢ € T, (M).

From Theorem 2, M = C—{0} is hyperbolic with respect to Sy-metric.
Moreover, we have '

THEOREM 4. Let M = C—{0}x ... xC—1{0} be the Cartesian product
of n copies of C—{0}. Then M is hyperbolic with respect to Sy.

Proof. Repeated use of the first inequality of Theorem 3 and inequality
(14) imply
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(37 Sw(z, &) > } min {7'51"_:,-= l,2,...,n},
()

where z = (z,...,z,)e M, & = ({4, ..., &) e C" and 6(z;) denotes the distance
from z; to the boundary of C—{0}. The hyperbolicity of M is now clear
from (37).

THEOREM 5. Let M be the n-dimensional complex projective space which
omits (n+1) hyperplanes in general position. Then M is hyperbolic with
respect to Sy.

Proof. Without loss of any generality we may assume that

(38) M =n{(zg,...,2)eC"*1—={0}: z; #0, j = 0,1,...,n},

where n: C"*!'—{0} - P,(C) is the canonical projection. That is,
(39) M=P/(C)—HyuH,u...UH,,

where H; = n{(zo,...,2,)€ C"*'={0}: z; = 0}, j=0,1,...,n. Since M is
biholomorphically equivalent to M = C—{0} x ... x C—{0} which is hyper-
bolic with respect to Sy by Theorem 4, M is also hyperbolic with respect
to SM.

In view of §., =0 for all meN, we have the generalization of
Corollary 1.

CoRrOLLARY 3. There can not be any (1-1) holomorphic mapping from C™
into P,(C) minus (n+1) hyperplanes in general position. Equivalently, there is
no (1-1) holomorphic mapping of C™ into C" minus n hyperplanes in general
position. '

THEOREM 6. Let M = CxC—{0} x ... x C—{0} be the Cartesian product
of C with (n—1) copies of C—{0}. Then M is not hyperbolic with respect
to Sy.

Proof. Let z° be any point in M. We want to know if there exists
a neighbourhood U (z°) and ¢ > O such that

Sml(z,¢) = ¢ lﬂs'ljiaé(" 1<l
or

(40) max ﬁl* > 4¢ max |£)).

25j%n §(z;) T 1€isa
For definiteness, we assume that

& )
4D 5(zy)  295% 8(z)

if 1max {&;1 = 1&2|. then
€j<€n
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€2

5z,) 2 4c|E,|.
or
(42) 1 > 4c¢
0(z3) -

Since &(z;) < oo, there exists a neighbourhood U(z°) of z° and ¢ > 0 so
that (42) holds for all ze U (z°). If max |[§;] = |{,| for k 5 2, then

[$1

3(z,) 2 4c|&il
or

(93
(43) 2] > 4cd (z,).

Keeping &, finite and taking |£,| sufficiently large we may let ¢ > |£,l/|&,
for any given ¢ > 0. From (43), ¢ < £/43(z,) and there is no ¢ > 0 which
satisfies (40).

CoROLLARY 4. The n dimensional complex projective space P,(C) minus n
hyperplanes in general position is not hyperbolic with respect to S-metric.

In this connection, we show by an example that the hyperbolicity in the
sense of Wong ([8]) differs from that of Royden ([7])

ExampLE. Let M = C—{0, 1} and N = C. Since K. = 0, from Corollary 2,
(44) KMXN((Z’W),(gsn)) = KM(Z, é) >0

for (z, wye M x N and (¢, n) e C*. Therefore, M x N is hyperbolic with respect
to KR-metric in the sense of Wong, but it fails to be hyperbolic in the
sense of Royden.

To show this, we may assume that M = 4 and N = C. Then

4
1—|z|?

for (z, w)e A x C and (&, n)e C. Let (z4, w,) be any point in 4 x C. We need
to check if there exists a neighbourhood U of (z,,w,) and a constant
¢ > 0 such that
—1«% > nmax (¢], Inl) for (¢,m)eC?*  and (z,w)e U.

-z

(45) Kaxclzo W (&, m) = Ka(z,8) =

(46)

If |&| = |n|, it clearly holds, while if || > [¢],

47) :—j: > c(l=|zo).

Since n € C may be chosen arbitrarily for each finite £, ¢ = {£|/|n| can be made
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arbitrarily small. Since z,€ 4, there exists an r such that |z <r < 1.

€ ¢ . . ..
From (47), ¢ £ [l < = This shows that there i1s no positive
—_ ZO —r

constant ¢ which satisfies (46).

Concerning the continuity of S-metric we can only prove:

THEOREM 7. Let M be a Riemann surface. Then Sy (z, &) is continuous
on T(M).

Proof. If M is of genus O, then Sy = 0 and, hence, it is continuous.

If M is of genus greater than 0, then S,, defines a proper metric in which
case

Sm(z, ) = inf{%: dfeF (4, M) f(0) = z}.
Let g({) = f(}),;(‘)—f)@—. Then g is univalent in 4 and satisfies: g(0) = 0,

g’ (0) = 1. Since the class of univalent functions g, normalized as above,
forms a normal family, so does the class ¥ (4, M). Let (z, {)e T(M) and
let (z;, &) — (2, &). Let € > 0. Suppose that f, € ¥ (4, M) is a sequence such
that £,(0) = z,, £, (0) = &, and

(4
|/ (O)]

for sufficiently large k. Since f,€.¥(4, M) is a normal family, there exists
a subsequence { ﬁj} such that fkj (z) = f(2) uniformly in 4. The limit function
f is either univalent or constant in 4. We may assume that ¢ # 0. Then f
can not be constant. Therefore, f is in & (4, M) and satisfies: f(0) = z
and f'(0)v = &. Thus,

(48)

< Smlzp, S)+e

1<)
Sm(z, &) = 1/ 0) < Smlzp, S te.
This proves the continuity of Sy (z, &), since S, is always upper-semi-
continuous.
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