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Envelope of Dirichlet problems on a domain in C”
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Abstract. The upper envelope of plurisubharmonic functions with given boundary values ¢
on a domain 2 =« < C" is characterized as the infimum of all functions on Q with boundary
values ¢ which are harmonic with respect to some K#hler metric on Q. On a convex domain
2 < R" the lower envelope of Dirichlet problems is shown to be the upper envelope of convex
functions.

We will show that the infimum of the solutions of a certain family of
Dirichlet problems with fixed boundary values is equal to a supremum of
plurisubharmonic (psh.) functions. We consider a domain Q < < C” such that
Q is C? and strongly pseudoconvex, and we consider a Hermitian matrix-
valued function (a;;(z)) on Q with the property that g;;(z) is measurable, and
there exists ¢ > 0 such that

1
holds a.e. on Q. Let us define the divergence form operator
0 ov(z)
2 P,(v) = —Na:(z)=—=).
@ =3 r(ae af,.)

We will use the notation
L (Q) = (pe Z(Q): Voe l(Q)]

to denote the Sobolev space of functions with gradient in I?(Q). For
pe IZ(Q), we say that

P,p =f holds in a generalized sense if

Lj=1

> [ 0p
- Z J'é*z:av(z)a?j = JV’f
P4 .

Q
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holds for all Yy e C§(R). A standard argument involving the Hermitian form

0
(o, ¥ =Zja—?

g
a;;(z) —
J azj
Q
yields a generalized solution of the Dirichlet problem:

3) If feC'(09Q), then there is a unique ve I3 (Q) such that v = f on 0Q,
and P,v =0,

where P and (qg;;) are defined by (1, 2) (see [8)).

Given a Hermitian matrix-valued function (g;;(z)), we also define the
(n—1, n—1) form

n(a) = Z a;;*(dz; A dZ))

i,j=1

where the x-operator is defined so that

*(dz; A dZ) A \/fidzi ndzj = N\ \/’Tldzj A dz;.
j=1

Let us consider the class
« = !(a;;(2)): a;; is bounded and measurable on Q, (a;;) is Hermitian
a.e.,, there is a constant ¢ > 0 such that &/ < (a;;(2)) < i—l holds ae.,
deta;(z) = 1 ae., and dn(a) =0 in the sense of distributions}.
Our main result concerns the following envelopes
I1(f) =inf{v,: ae./ and v, solves (3))

and

4) U(f) =supiw: wis psh. on ©, and limsupw({) <f(z) for ze 09Q}.

{—z

THEOREM 1. Let Q — c C" be strongly pseudoconvex with C* boundary.
Then for feC!(0Q), I1(f) = U(f).

Remarks.

1. It was shown in [2] that the right-hand side of (4) is the generalized
solution of equation (7) with ¢ = 0.

2. Other dual characterizations of the upper envelope of psh. functions
were given in [3], [4], [6], [7] where different families are used in the
infimum,

Proof. Let U, denote the right-hand side of (4). Then
Uoe C(2)n P(R), and thus Ugye I3 (2, loc). Thus for ae ./, P,(U,) is well
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defined as a distribution of order —1. We will show that P,(U,) = 0, and so
the inequality > in (4) will follow from the maximum principle.

Let {U?) = C=(Q)n P(Q) be a sequence converging to U, in I3 (£, loc).
If peC& (), ¢ =0, then

n 0
j‘PP(Uo) ):j a‘”[.,() ]
Li=1 “i

L e ¢ ou’
B .lslf(]) i,jz=1 j 0z; [ J(Z) ]

=lim |{ —dp A /—1n(a) A cU?

=lim | on{a) A /—18cU% = 0.

Q2

The integration by parts is justified since dn(a) = 0, and the inequality arises
from the positivity of n(a).
To consider the reverse inequality, we consider the envelope

(5) I.(f) = inf {v%: ae o/},

where tf is the unique solution ve 4 (Q) to vl,, =f, P,v =¢ on Q. By the
maximum principle, it is evident that

I.(f) < I (f).
Let peC?(Q) be a function such that {p <0} =Q, {p =0! = dQ, and

J-18%e > ¥ /-1dz A dz;.
i=1

(Such a function exists by the strict pseudoconvexity of 2.) For a competitor
v in the infimum (5) and the corresponding competitor v, in (4), we may
argue as above to conclude that

P,(v+e0) 2 en(a) A / — 1009 > etrace(a;;) > ne
By the maximum principle, then,

v,+ee < U
and so we conclude that

(6) I(D—smgxwl < L().
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Now let us consider the solution U, of the Dirichlet problem:
(7) UeP@NC(Q), Ulsp=f, @dU) =¢ N\ /—1dz; Adz;.
j=1

For arbitrary é > 0, there exists U’ such that
Ule P(QnC"'(Q), max|U,(2)—U(z) <34,
)
(8) .
(dd U = ¢ N\ /—1dz; A d3;.
j=1

(This follows from Theorem 7.3 of [1]) Now we let (d;) denote the
Hermitian matrix-valued function such that

-n+1

(8) n(@) = —— (dd° U¥y~ 1.

n!

One may check that de /. Further by (8), it follows that P,(U?) =¢. Thus
we see that

9 L(fy < U2,

where f; = UJ|,,. By the maximum principle it is evident that

. (fs)—1.(f) <o,
and so from (6), (8) and (9), we have

I(f)—emax|g S Ul+8 < U, +25.
o

Letting ¢ —» 0, we obtain
I(f) S U0+ 26’
which gives the reverse inequality for (4), since & is arbitrary.

Remark. It is evident from the proof that the infimum on the left-hand
side in (4) may be taken only over the family P,, where a is given in (8).

We will now give two reformulations of this result. The first involves
Kihler metrics.

Recall that if g =) g,;dz;dz; is a K&hler metric on a manifold Q, then
the associated Laplacian is given by

1 ¢ ~ .. 0
A =Z'7_ /ggu___’
d \/gaZj\ (32,-

where g = det(g;;) and (g¢") is the inverse matrix of (g;;).
We use now a result of Evans [5] which says that the solution U? of (8)
is in fact C® smooth. (Another proof is given by Trudinger [9].) Now let g’
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denote the Kihler metric with (g?); = 8*(UJ)/0z; &Z;. It follows, then, that
Agf = P,,

where d is defined by (8’).
We will let ¥ denote the set of Kihler metrics on £ such that
g;jECw(Q), and

hl'—‘

el <(g;j) <

for some ¢ > 0. For feC'(dQ) and ge .#, there exists a unique solution
v,€ L} (Q) such that

4,v,=0 and v ., =1
We may define
I(f)=inflv,: geX).

Our first reformulation shows that the upper envelope of psh. functions
coincides with the lower envelope of all functions that are harmonic with
respect to some Kdihler metric.

THeOREM 2. If Q = < C" is strongly pseudoconvex with C* boundary, and
if feC'(0RQ), then

I(N) = U

Our second reformulation concerns the corresponding problem in R". If
w << R" is a convex domain with C? boundary and nowhere vanishing
Gauss—Kronecker curvature, then we may identify w+iR" with the
logarithmic image of a strongly pseudoconvex Reinhardt domain Q < < C".
If we are given feC'(dw), then this corresponds to a rotation invariant
function f e C'(6Q). We may take the function U? in (8) and the operator P,
to be invariant. Thus we will have dU%/08; =0, j =1,...,n, where we write
zj =t P

If we use the variable t =(1,,...,¢,) to denote (real) coordinates on
® = R", then rew corresponds to zeQ with r; = e”. The function U? on Q
induces a function w’ on o via

wl() = Ul(e).

Let us replace ¢ on the right-hand side of (8) by e/(z|?...|z,?). With this
new choice of U%(z) and w?(r), we have

azwf 20 + .t ty) & Ué 1
-— n * n t .
det(éti Blj) e de (02 0z; ) "

Thus, taking (b;;) to be a constant times the cofactor matrix of ¢ wg/dr; ot;,
we have:

n 2

Piwl) = 3 byl () =
iLhJj=1 B
AU
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and P, is in divergence form:
n aZ n {‘;

P, = Z bij(r)ar,-ﬁtj= Y 6_r,

ij=1 Jj=1

¢
b (f)—.
U(r)af-

J

Now we consider the real version of ./ above:
/g = I(h;;(1)): (by;) is bounded, measurable, reai, and symmetric for
tew, P, is divergence form, &l s(b,vj)gél for some ¢ >0, and
det(b;) =1].
In a similar way we may define the lower envelope
Ig(f) =iof v, be /g and v, solves (3)}.

Theorem 1 in this case yields the following:

THEOREM 3. Let w < < R" be a smoothly bounded convex domain such
that the principle curvatures of éQ are all positive. If feC!(dw), then the
infimum of Dirichlet solvers is the convex envelope, i.e.

Ir(f) = sup ,v: v is convex on w, and limsupv(C) < @(x) for all xedw!.

{—-x
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