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Abstract. Information measures which are either additive such as Shannon’s entropy, the
directed divergence, etc., or non-additive such as the entropy of degree f can be characterized
with the help of functional equations. Here we solve two functional equations (1.3) and (1.4)
connected with these measures.

1. Introduction. Shannon’s entropy, the inaccuracy, the directed diver-
gence, etc., are additive. However, there are information measures such as the
entropy of degree § [3] which are not additive. The sum form representation
of these measures (which is a common algebraic property of most of these
measures) together with the additivity or the non-additivity property resulted
in the study of many interesting functional equations and their generaliz-
ations, for example (1.1) and (1.2) ([1], [2], [4], [6], [7], [11)]):

(1.1) i Y fpig) = Z f(p)+ Z 1),

i=1j=1

(1) Y3 fna)= 3 iﬂ@+2»§ﬂm

i=1j=1

for Pel,, QeT,, where I',={P=(py, p3, ..., Pa): Pi =0, Z pi=1}.

Our aim is to obtam the ‘measurable’ solutions of the following function-
al equations (which are generalizations of (1.1) and (1.2)) connected with the
above information measures and more:

(1.3) zznum—z i m+zyimw,
i=1 j= i=1

i=1j=1

3

(14) Z Z f(x yjsuvj)_.zl i nyjs J)'*'Z yj Zf(xn ul)

i=1j=1
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for X, Yerll,, U, Vel,, a, B non-zero reals. Here we solve (1.3) and (1.4)
for ‘measurable’ functions, holding for some fixed pair n,m (n=2, m = 3)
by simple and direct methods. In the process we obtain some interesting and
elegant results (like Results 3 and 4) which are quite useful here, but could
also be useful elsewhere under similar circumstances. In {8], equation (1.4) is
solved for ‘measurable’ f, holding for some fixed pair m, n, where both m and
n are > 3.

2. Notation and auxiliary results. Let I = [0, 1], R, reals, J =1 x]0, 1[ U
v {0, 0), (1, 1)}, s(x) = —xlogx—(1—x)log(l —x). We follow the conven-
tion: 0-log0 = 0 = 0" (y # 0) and whenever v; = 0 the corresponding y; =0
too. In the next two sections we make use of the following auxiliary results.

Resurt 1 ([5), [8]). Let fi: I-R (i=1, 2, ..., n, n> 3 (fixed) and any
one of the fs be measurable. Then the fs satisfy

2.1) Y fix)y=c¢, XeT, (fixed n>23),
i=1
where c is a constant if and only if

(2.2) fix)=Ax+b, xel(i=1,2,...,n),

where A, b; are constants with A+ ) b, =c.

i=1

ResuLts 2 [8). Let F;: IxI (or J)=»R (i=1,2,...,n, n>3 (fixed)
and any one of the F;s be measurable in each variable. Then the F;s satisfy

(2.3) i Fi(x;,y)=d, X,Yel,,
i=1
where d is a constant if and only if
(24) Fi(x,y)=Ax+By+c¢; (i=1,2,...,n),
where A, B, ¢; are constants with A+B+Zm:l ¢ =d.

ResuLts 3 [9]. Let L: I — R satisfy the functional equation

(2.5) L(x)+ L(y) = ()::;; L(x+y) (xl, y=20,0<x+y<1),

where a (# 1) e R. Then

(2.6) L(x).= Cx®, where C is a real constant.
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ResuLt 4. Suppose |, m, n, k: I — R and let one of |, m, n be measurable
and let a, B be non-zero reals. Then I, m, n and k satisfy the functional
equation

27 1) +m((1=x) )= +(1=)n() = Y k(x), x, yel,
if and only if they are of the form

I(x) = Axlogx+(B+C) x+a,

m(x) = Axlogx+Cx+b (x=1, f=1),

(2.8)
n(x) = Axlogx+(C—D)x+a+b,
k(x)=A[xlogx+(1—x)log(l—x)]+Bx+D,
or
29) I(x) = AxX + Dx+a, m(x)=Bx*+Dx—a+b (a=1, B#1),
n(x) =Cx*+Dx+b, k(x)=Ax"+B(1—x)-C,
or
210 I(x) = AX*+Bx*+a, m(x)=Ax*+Cxf—a (a#1, a #p),
n(x) = Ax*+ Dx?, k(x) = —D(x*+(1—x)*)+Bx* + C(1—xp,
or .
I(x) = Ax*log x+(B+D) x*+a,
@.11) m(x) = Ax*logx+(C+D)x*—a (x#1, a =f),

n(x) = Ax*log x+ Dx*,
k(x) = A(x*log x+(1 —x)*log(1 —x))+ Bx*+ C (1 —x),
where A, B, C, D, a and b are arbitrary constants.

Proof. For the case a =1 refer to [S]. Now, we treat the case a # 1.

First of all, y =0 in (2.7) gives n(0) = 0 = [(0)+ m(0). Then x =1 in (2.7)
gives

(212 n(y) = 1(y)—-1(0)—k(1))’.
From (2.12) and (2.7) with x =0, we get
(2.13) m(y) = 1(y)+(k(0)— k(1)) y* — 21(0).

From (2.12) and (2.13) it is obvious that if any one of /, m, n is measurable,
so are the others and from (2.7) so is k. '
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Setting y =1 in (2.7) and using (2.13), we have
(2.149)  k(x)
= [(x)+1(1 —x) = 21(0) + (k (0) =k (1)) (1 = x)P — n(1) (x*+(1 = x)).
In the above replacing x by 1—x and then adding the two, we obtain
(2.15)  k(x)+k(1-x)
= 2(1(x)+ (1 —x) — 21(0)) + (k (0) — k (1)) {x* + (1 — x)*) = 2n (1) (x* + (1 — x)°).

From (2.7), (2.12) and (2.13) results
(2.16)  1(xy)+1((1—x) y)—200) = (x*+ (1 —x)*) (I(») = 1(0)— k(1) y*)
= Y [k ()= (k (O = k(1)1 —x/].
Now, define
(2.17) L(x) =2(l(x)—1(0)) for xel, so that L(0)=0.

Replacing x by 1—x in (2.16) and adding the two using (2.17), and (2.15), we
get

(2.18)  L(xy)+L((1-x)y) = (x*+(1 = x)*)(L(y)— Cy*)+ y* (L(x)+ L(1 - x)),

where C is a constant. Putting y = 1 in (2.18), it is easy to see that C = L(1).
Now, put x =4 and y =} separately in (2.18), to get

1

(2.19) Lizy) = F(L(y)—L(l)yﬁ)-*-L(%)y",

and

(2200 LGx)+LEA-x)
1
- (L(%)—L(I)EE)(JC’HI —x)’)+51,7(L(x)+L(l —x)).

From (2.19) and (2.20), when a # B, we obtain

(2.21) L(x)+ L(1=x) = D(x*+ (1 —x)*)+ B(xf +(1 — x)),

for some constants D and B.
Now, x =0 in (2.21) gives D+ B = L(1), since L(0) = 0. Writing

(2.22) H(x) = L(x)—Bx? for xe€l,
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using (2.21), (2.18) can be rewritten as,
(2.22) H(xy)+H (1-x)y) = (x*+(1=x*)H(y) (@ #1).

By setting xy = u, (1 —x)y = v in (2.22'), it is obvious to see that (2.22) takes
the form (2.5), so by Result 3, we have H(x) = Ax* (here we do not need H
to be measurable), so that L(x) = Bx® + Ax*. From (2.17), (2.13), (2.12) and
(2.14), it follows that we indeed have the form given by (2.10) when a # 1 and
a # f.

Remark. Replacing y by 1—y in (2.18) and adding the two and using
(2.21), we obtain M(xy)+M((1—x)y)+M(x(1—-y)+M((1-x)(1-y)) =0,
where M(x) = L(x)—Dx*—Bx?. From [10], we have M(x) = ax—a/4. Since
M(0) = L(0) = 0, we again get L(x) = Dx*+Bx? as above.

Let us finally consider the case a = f (a # 1).
Letting xy =u, (1—x)y = v, (2.18) can be put in the form
(223) L(w+L(v)
w4
(u+v)

for u,v >0 with O <u+v <1, x#1.

v

(L(u+1v)— L(1)(u+ 1)) +(u+v) (L (L)”‘ (—))

u+v u+v

Replacing u by tu and v by tv (tel) in (2.23) and utilizing (2.23), we have
(224)  L(tz)+ L(tv)

u+0* « w+°
= oy L{t(u+v)+t (L(u)+L(v))—t"(u+v)m L(u+v).

For fixed tel, define
(2.25) N(x)=L(x)—t*L(x) for xel.
Then (2.24) takes the form (2.5), so that from Result 3, we obtain N(x)
= C(t) x%, that is, from (2.25) we have
(2.26) L(tx) =t*L(x)+x*C(t), x,tel,
from which it follows that L(x) = Ax*logx+ Bx?, xel. Now (2.17), (2.13),
(2.12) and (2.14) yield the form given by (2.11). This proves Result 4.

Remark. N in (2.25) need not be measurable. L in (2.25) indeed has the
asserted form above can be seen by interchanging x and ¢ in (2.26) to get C(r)
= L(t)+ Bt* and then recognizirg the resultant equation as the logarithmic
functional equation.

4 — Annales Polonici Mathematici XLVIII.2
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3. Solution of equation (1.3).

Tueorem 1. Ler fi;, g5, hi: 1 =R (i=1,2, j=1,2,..., m, m(fixed) =2 3)
be such that for each j=1,2,...,m, one of the functions f\, f;;, g; be
measurable. Then these functions satisfy the functional equation

(3.1) i Sry(xyp)+ il f2i(1=x)y))
j=1 j=

=(x*+(1 —x)w)ji1 gj(y’”,-il V3 (hy (X)+ hy(1—x))
for xel, Y =(y)ely, a, B non-zero reals and m a fixed integer.Z 3 l:fami
only if they are given by '
hy (x)+h,(1—x) = A(xlogx+(l—x)log(1—x))+Bx+a,
f1;(x) = Axlog x+(B+B)) x+a,;,
f2j(x) = Axlog x+B;x+a,;, -

(3.2)

gj(x) = Axlog x+(D+ B)) x +a;,

2 m m
with 3 Y a,— Y a,=D+a, in the case
k=1

i=1k=1
a=1, fpf=1
or
hy(x)+h,(1-x) = Ax*+B(1—x)-C,
f2j(x) = Ax’ + B, x+a,;,
g;(x) = Cx*+(D+B)) x+a;,
with
m 2 m
D= Z 0&“2 Z ix,
k=1 i=1k=1
in the case
a=1, p#1;
h (x)+h,(1—x) =Ax"+B(l—x)”—D(x"+(1—x)“),
(x) = AxXP+ 4;x*+Cx+ay;,
(34) flj( ) j 1j

fzj(x) = Bxp+A,-X"+Cx+azj,
gJ(X) = Dxﬂ+AJx’+Ex+aJ,
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with
C+ Zl kzla,,, =0=E+ Z ay,
in the case
a#1l, a#p,;
or |
hy (x)+hy (1—x) = A[x*log x+(1 —x)*log (1 —x)]+ Bx*+ D (1 —x)*,
f1j(x) = Ax*log x+(B+E;) x*+ Cx+ay;,
(3-3) frj(x) = Ax*log x+(D+ Ej) x*+ Cx + ay;,
gij(x) = Ax*logx+E; x*+ Ex+a;,
with
C+Z Z a,=0=E+ Z a,
i=1k=1
in the case
a ;!: I, a=3§8,

for xel, j=1,2,...,m where A,B,C,D,E, A;, B;,E;, a;;, a; and a are
constants.

Proof. For fixed xel, writing
(3.6)  fi(») = f1,0)+ fr;(1 =) y)—
—(x* +(1=x%)g; (») =y (hy () + b, (1 = x))
for yel,j=1,2,..., m (3.1) can be reduced to (2.1) with ¢ = 0, so that from

Result 1, we have

(3) f,0)=Ay+b, with A+ Y b,=0.

i=1

Then
b; = fj(O) = f1;(0)+ £2;(0)— (x*+(1 —x)*) g;(0),

A= —i Z Z £ (0)+ Z g; (0)-(x*+(1 —x)*) = d+c(x*+(1 —x)?),

j=1 i=1j=1

so that (3.6) and (3.7) yield
(3.8) {flj(xy)_flj(o)_dxy} + {flj((l_x)y)__flj(o)_d(l —-x)y}—-
—(x*+(1=x)7) 1g; (M +cy—g;(0)} = y* hy (x)+h, (1 —x)],
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which is of the form (2.7). First from Result 4, it is easy to see that if, for
example, fi; is measurable so are f;,g; and h;(x)+h,(1 —x). Secondly,
noting that h,(x)+ h,(1 —x) is the same for all j, starting off with h, (x)+
+h,(1—x) (i.e, k(x) in Result 4), from Result 4, we obtain the required forms
(3.2) to (3.5). The converse is easy to verify. This proves Theorem 1.

4. Solution of equation (1.4). Let f: J — R be measurable in each variable
and satisfy the functional equation

@ Y [y, o)+ £ (=2 (1-)v,)]
j=1
= (=) ¥ S0 0)+ X (e w4 £(1—x, 1-u)

for x,ue[0,1), Y=(y), V=()el, a B non-zero reals and n a fixed
integer > 3.
For fixed (x, u)eJ, define

42 g, v =fxy, uw)+f((1-xy, 1—w)v)—(x*+(1 =x)) f (v, v)—
Y (f(x, )+ f(1—x, 1—u) for (y,v)e].

Then (4.1) becomes Z g(y;, v) =0 (n>3) with g ineasurable in each

j=1
variable, so that by Result 2,
1
gy, v) = A(x, u)y+B(x, u)v—;(A+B)(x, u)

and that
@43)  f(xy, u)+f{(1-x)y, (1 —uwv)-

—(+A=xP) f (v, ) =Y (f (x, W)+ f(1=x, 1 —u))
= A(x, wy+B(x, u)v—%(A+B)(x, u).
Now y =0 in (4.3) gives
@4)  £(0, ut)+ (0, (1 —u)v)—(x*+(1—x)?) £ (0, v)
= B(x, u)v—%(A +B)(x, u).

Let us first treat the case o # 1.
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In (44), put x = x, and x = x,, holding u, v constant, first to obtain
f(0,v) = D(uwyv+C(u) and then noticing the independence of u of the left-
hand side, we obtain

4.5) f(0, v) =Dv+a,
where a, D are constants.
Use (44) and (4.5) to get
B(x,u) =D(1-x*~(1—-xf), A(x,u) = ~(D+na)(1—x*—(1-x)")—na,
so that (4.3) now becomes
4.6)  f(xy, u)+f((1-x)y, (1-u)v)—
—(x*+(1=xF) £, )=y (f (x, W+ S (1 = x, 1 —u))
= (¥*+(1 —x)*)(Dy+nay—Dv—a)—(D + 2na) y+ Dv+ 2a.
Setting x =0 in (4.6) and using (4.5), we have
S, A—=wv)—f(y, )+ Duv—y*[f(1, 1 —u)+ Du+a] = —nay,
that is, (changing u into 1—u)
(47) {f(y, uv)—Duv}~{f (v, 1)~ Dv} = y* {f (1, uy—Du+D+a} —nay.
Letting y = 1, (4.7) becomes
f(1, uw)—Duv+D—(n—1)a
={f(l,)-Dv+D—(n—1a}+!f(1, y)—Du+D—(n—1)a},

from which (which is logarithmic), since f is measurable in each variable, we
get

f(1,u)=Alogu+Du+(n—1)a—-D for ue]0, 1].
Putting this back into (4.7), we get
f(y, uww)~Duv = f(y, v)— Dv+ y? (Alog u+ na)—nay

also
= f(y, uy—Du+ y? (A log v+ na)—nay,
so that
f(y,v)—Dv—Ay’logv =a function of y (say) k(y),
that is,

“4.8) f(y, v) = AYPlogv+Dv+k(y) for (y, v)eJ.
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Substituting (4.8) into (4.6), we have
(4.9) [k(xy)+Dxy+2naxy—al+[k((1—x)y)+D(1—x)y+2na(l -x)y—a]~
' — (x*+(1 = x)(k (4)+ Dy + nay —a) — y? (k (x) + k (1 - x) + D)
=AY [x*+(1 =x—x* —(1—x)]logv.

If a # B, then A = 0 since the left-hand side is independent of v. If « = f, the
term on the right-hand side drops out. In either case (4.9) is of the form (2.7).
Then, by Result 4, in the case a # 1, a # B, (2.10) gives (use n(x))

k(y)+ Dy+nay—a = By*+ Cy?,

so that

f(y, v) = By*+Cy? —Dy—nay+a+ Dv.
This f is a solution of (4.1) provided B = —C, a =0, that is,
(4.10) S, ) =B(*~=y)-D(y—v) (@#1, a#p).
Again by Result 4, in the case a # 1, a = f§, (2.11) gives (use n(x))

k(y)+Dy+nay—a = By*logy+ Cy*,
that is
f(y, v) = Ay*logv+By*log y+ Cy*—~Dy—nay+a+ Dv.

This f is a solution of (4.1) if C =0 = a, that 1s,

4.11) f(y,v) = Ay*logv+By*logv—D(y—v) (x#1, a=p).

Now, let us treat the case a = 1.

For the case f =1 =a we refer to [7]. So, let us assume that f§ # 1.

First, putting x =0, u =0 in (4.1), we get

nf(0,00 =) ¥-(f(0,0+s(1, 1)
j=1

that is,
f(0,0=0=s(1, 1).
Now (4.4) becomes

SO, u)+ £ (0, (1~w)2)~£ 0, 8) = B(x, Wo—(4+B)(x, .

First with v = 0 we get (4+ B)(x, u) = 0. Then observing the independence of
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x of the left-hand side, we can conclude, so should be the right-hand side,
and get B(x, u) = B(u) (say), and then A(u) = —B(u), so that

£(0, uv)+ (0, (1 —u)v)— f(0, v) = B(u)v,

where B is symmetric (B(u) = B(1 —u)). Now, the application of Result 4,
yields

4.12) f(0, uy= —Dulogu+ Eu,
(4.13) B(u) = —A(u) = —D(ulogu+(1—u)log(1—u)) = Ds(u).
Now, (4.3) can be rewritten as, using (4.13),
4.14)  f(xy, w)+f(1=x)y, 1=uwv)=f(y, v)
=y (f(x,w)+f(1—x, 1 —w)+D(v—y)s(u).
Setting x =1 in (4.14) and using (4.12), we have
415 f,uw)—f(y,v)=D(1—-uvlog(l—uw)v—E(1—u)v+
+y*-{f(1,)—D(1 —u)log(1 —u)+ E(1 —u)} +(v—y) Ds(u).
With y =1, (4.15) can be put in the form
[f(1, uv)+ Duvloguv+ E (1 —uv)]
=[/(1, wy+Dulogu+E(1—u)]+[f(1, v)+ Dvlogv+E(1—-v)],

so that, since f is measurable in each variable, we obtain

(4.16) f(1,u = —Dulogu+E(u—1)+Clogu, uec]0,1].
Putting this value of f(1, u) into (4.15), we have
S (y, uv)+ Davlog uv— Ebv
= f(y, v)+ Dvlogv— Ev—Dys(u)+ y? [Ds(u)+ Clogu]
also by symmetry in u and v
= f(y, u)+ Dulogu— Eu—Dys(v)+ y* [Ds(v)+ Clogv],
from which, by equating the right-hand sides, we obtain
f(, w+Dulogu—Eu+ Dys(u)— y* [Ds(u)+ Clogu] = k (y) (say),
that 1s,

(417)  f(y, u) = k(y)—Dulogu+ Eu—Dys(u)+ y? [Ds(u)+ C log u].

Putting x = 0 in (4.14) and substituting this value of f into the resultant and
also using (4.12) and (4.16) we have D(y—y#)[s(u)+s(v)—s(l—u)v)] = 0.



164 PlL. Kannappan

Since {y,y’} (B#0,1) is linearly independent and s(#)+s(3)—s@3)
=3log3 #0, it follows that D = 0. Now, (4.17) becomes

(4.18) f(y, w) =k(y)+Eu+Cy*logu.

Substituting this value of f into (4.14), noting the linear independence of 1,
logv and equating the coefficient of logv, we get Cy?(x+(1—x)—1)=0.
Since f # 1, this implies C =0, so that (4.14) and (4.18) yield,

k(xy)+k((1=x)p)—k(y) = Y[k (x)+ k(1 —x)+ E],

which is a special case of (2.7). From Result 4, it follows that k(x) =

Ax? + Dx and from (4.18), f (y, u) = Ay’ + Dy+ Eu. This f satisfies (4.1) pro-
vided, A+ D+ E =0, that is,

(4.19) S, W=A"-w+D(y-uw) (@=1, f#a).
Thus, we have proved the following theorem.

THEOREM 2. Let f: J — R be measurable in each variable. Then [ satisfies
the functional equation (4.1) for some fixed n'> 3, a, B non-zero reals if and
only if

Ax"logx+Bx"logy+C(x—=y) (a=8, a#1),
A(x*=x")+B(x~y) (x#P),

where A, B, C, D, E and a are constants with D+ E = (n—2)a.

Axlogx+Bxlogy+Cylogy+Dx+Ey+a (x=1=p),
S(x,9) =

I express my sincere thanks to the referee for useful comments and
suggestions which helped to improve the presentation of the paper.
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