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On the extension of integrable solutions
of a functional equation of »n-th order*
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Abstract. Some theorems concerning the extension of integrable solutions ¢ of functional
equation (1) are given, under suitable hypotheses on the given functions h and f, i=1,...,n
In this paper we study the problem of extending integrable solutions ¢

of the functional equation of n-th order

(1) (D(JC) =-..h(x: ¢U1(x)]:"'s(p[ﬁl(x)]):

where h and f;, i =1,...,n, are given functions.

Integrable solutions of this equation have been investigated by
Matkowski [5]; see also [4].

We start with a particular case of Baron’s theorem [1], in which the
following assumption plays an important role.

(@) fi: I-»1,i=1,...,n where I is an arbitrary set; moreover, for a

certain subset I, of I and for every i = 1,...,n, we have f;(Io) = I,; and for
every xel there exists a positive integer k such that

;,0...0f, (x)el, for every iy,...,iy =1,...,n

TueoreM 1 (Baron [1]). Let I, Y and I, =1 be arbitrary sets and h:
IXY"—>Y and f;: I -1, i=1,...,n, arbitrary functions. If assumption (i)
is fulfilled, then for every solution @o: I, — Y of equation (1) there exists
exactly one solution ¢: I - Y of (1) such that

2 P(x) = @o(x) for xel,.

Since in the sequel we shall appeal to the method of the proof of this
theorem, it seems reasonable to reproduce it here.
Proof of Theorem 1. We define the following sequence of sets

3) Ly =iélﬁ_l(lk)’ k=0,1,2,...

* This paper won the third prize at the Marcinkiewicz competition of the Polish
Mathematical Society for the best student's research work.
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As a direct consequence of the above definition we get

(4) j;'(Ik+1)CIh1 i=17"~,n5 k=0, l, 2,...

It follows from (i) that I, = f;~ ' (I,) for every i =1,...,n, and I, = I; in view
of (3). By induction

(5) Lclhys k=0,1,..
Moreover,
k=0

in virtue of hypothesis (i).
Now we define a sequence of functions {@,}i—o, ¢: It = Y, k=0,1,...,
by the formula

(7) qok+1(x)=h(x’ qok[fl(x)]:""qok[fn(x)]): xejk+1’ k=0s I"--!

where @q: Iy — Y is given solution of equation (1). It follows from (4) that
this definition is correct. Recalling (5) and (6), we may define a function
@: I->Y by

(8) e(x):=¢(x), xel, k=0,1,...

It is clear, in view of (7) and (8), that ¢ fulfils equation (1) in I and that it
yields the unique ‘extension of ¢, to a solution of (1) in the whole of I.
In the sequel we denote by IP[I] the set of all functions which are
Lebesgue integrable with p-th power on a measurable set ] c R, 0 < p < 0.
Moreover, by ¥ [I] we denote the o-algebra of all Lebesgue measurable
subsets of the set ] — R.
Regarding the functions h and f;, i =1,...,n, we assume that

(i) The function h -maps I xR" into R, where Ie%[R]; for every
fixed (y4,...,y) €R" the function h(, y,,...,y,): I = R is measurable,
and for almost every xel and for every i=1,...,n the function
B{x, ¥yeees Vie ga7s Vit 1ee-0 V) R = R is a continuous function, the variables
Y,€R, j=1,....n, j #1i, being fixed arbitrarily.

(iii) For every i =1,...,n and Ae L [I], f;”'(A)e L[I].

Let us also quote the following

Lemma 1 (Carathéodory [2]; see also [6]). Suppose that the function h
Sulfils hypothesis (ii). If g;: I > R, i =1,...,n, are measurable functions, then
the function H: I — I defined by

H(x)=h(x, g;(x),....g.(¥), x€l,
Is measurable.
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Now we shall prove

THEOREM 2. Suppose that the functions fi: I—-1, i=1,...,n and
h: IxR"— R, where I is a set, are given. If (i) holds with an I, < I, and
if @o: 1o — R is a solution of equation (1), then

(a) there exists exactly one solution ¢: I — R of (1) such that condition (2)
is satisfied :

(b) moreover, if hypotheses (ii} and (iii) are fulfilled and @4 is a measurable
function, then ¢ is also measurable

(c) finally, if there exists a function gelP[I] such that

h(X, y1oees pll Sg(X), (X, Y1s- s ya) €1 X R,
then every measurable solution ¢: I — R of equation (1) belongs to the class
I’[1].
Proof. Assertion (a) is an immediate consequence of Theorem 1. For
the proof of (b), let us observe that the functions ¢,: I, » R defined by
formula (7) are measurable, on account of Lemma 1, and we have

@~ '([b, ©))= U ¢ '([b, ©)) for every beR.

,,
i Ca
[=)

Statement (c) follows from the inequality

Jlo@lFdx = [[h(x, @ [fi (0], 0 [fa(0] dx < [[g(x) PP dx.
I I I

Let I = R be an interval and let £ eI, where I is the closure of J in R
=[—o0, +00]. We shall denote by SZ[I] (cf. {3], p. 20) the class of all
functions f: I - R which have a continuous n-th derivative and fulfil the
condition

f(x)=¢
x—¢

For ¢ = + o0 or ¢ = — o0 condition (9) has to be replaced by f(x) > x for
x€el, resp. f(x) < x for xel.

Further, we denote by RE[I] the class of all functions feS7[I] which are
strictly increasing.

Now we want to give a condition which guarantees that (i) holds.

Lemma 2. If f,eS3[1], i =1,...,n, where I = [0, a) or I =[0, a] with a
finite and I, = [0, ap), 0 < ay < a < o, then (1) holds.

Proof (cf. Remark 2 in [1]). It is enough to prove only the second part
of condition (i). To this end let us define a function F: I - R by the formula

9) 0< <1 for xel\{&}.

(10) F(x) = max [max {f;(}], xel.

0<t<x 1<i€n
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It is easy to see that FeSJ[I] and so, by Theorem 0.4 from [3], for every
xel there exists a positive integer k such that

(11) ’ F¥(x)el,,

where F* denotes the k-th iterate of the function F.

Moreover, by .induction, we have for every positive integer k and for
every iy,...,5€{l,...,n}

0<f;,0...0f;, () < F¥(x), xel,

which in view of (11) ends the proof.

In the sequel we shall assume that:

(iv) f;e R3[I], where I = R is an open interval, and the derivatives f;’ are
positive almost everywhere in I, i=1,...,n;

(v) There exists a measurable function g: I —» R such that

|h(x, Y1y s V) —h(x%, 0,...,0) < g (%) Y |yl
i=1

for (x, y1,...,y)€I X R";

(vi) h(, 0,...,00I?[I] for a certain pe&(0, + o).
- Write

_ g (x)F
02 M = a0 e

Tueorem 3. Let I =[0, a] and I, = [0, a,), where 0 < aq < a < oo, and
suppose that functions f;eSS[I], i=1,...,n, and h: I xR" = R are given and
Sulfil hypotheses (ii)(vi). If the constant M defined by (12) is finite and the
function @qy: Iy — R is a solution of equation (1) such that ¢oelP[I], then
there exists exactly one solution ¢: I — R of (1) such that (2) holds ; moreover,
pelr[I]. |

Proof. The existence of a unique solution ¢ of equation (1) and its
measurability follow Theorem 2, assertions (a) and (b), in view of Lemma 2.

Therefore it remains to prove that the integral of |}’ on I is finite. To
this end let us observe that the sets I, defined by formula (3) are intervals
having zero as the left endpoint; and since a€l, it follows by (6) that there
exists a positive integer ko such that I =1, . '

Hence it is enough to prove that

(13) [lo(x)Pdx <o, k=0,1,..
Ik
In the proof of this fact we shall use the obvious inequality
(14) (Y. by’ <(n-max b)><n’- ) bf, neN,0<p< o0,
i=1 1€ign i=1

where b, i=1,...,n, are arbitrary non-negative real numbers..



Extension of integrable solutions of functional equation 233

For k = 0 inequality (13) is true by (2), ¢, being integrable. Suppose that
(13) holds for a certain k > 0. It follows from (1) and (14) that

[ lopdx={ |h(x, o[fi(0];-., 9 [f, (0P dx

k+1 lk+1

= ,j h(%, 9LL )], rr @ Lfy ()])— B, O, .., 0)+

k+1

I

+h(x,0,...,0) dx
< 2"1]- |h(x, @ [fi (],..., o [£,(3)])—h(x, 0,...,0Pdx+

k+1

+2 [ |h(x,O,..., O)Pdx.
Ik+.l

Thus, according to (vi), it suffices to prove that

(15) IJ [h(x, @ L1 (], 0 [fa()])—h(x, O,..., O dx < 0.

k+1 .
Now, using accordingly hypothesis (v), inequality (14) with appriopriately
chosen b;, a change of variables in the integral, hypothesis (iv), relations (12)
and (4) we obtain

J |h(x, @ LA G-, 0 Lfa()])=h(x, 0,..., )P dx

Ik+l

< | Ig(x)l"'[élIqo[fa(x)]I]"dxsn"- [ 9GP 3 lo LA0IPdx

k+1 L i=1

% [g(x)1°
=n 1=211I 70 lo LAG)P- £ (x) dx

n n
MY | le@Pdx<n-M-Y [lo(Pdx,
i=1 f(0,) i=11,

which after taking into account the induction hypothesis, gives (15)..

We have also the following

TueorReM 4. Let I =[O0, a) and I, = [0, a,), where 0 < a, < a < o0, and
suppose that functions f;e S3[I], i=1,...,n, and h: I xR"— R are given and
Sulfil hypotheses (ii){vi), the constant M in (12) being finite. If

(16) b := max supfi(x) <a,

1<i€np xel
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and @oelP[lo] is a solution of equation (1), then there exists exactly one
solution @: I — R of (1) which fulfils (2); moreover, @ I’[I].
Proof. Let us observe that by (16) we have I = I, for some positive
integer k,, and we can just repeat the argument of the proof of Theorem 3.
In the sequel we shall use the following

LemMA 3. If {b)l=y is a sequence of non-negative real numbers which
Juifils
(17) bk+1 <S'bk+£', k=1,2,...,

where s€(0, 1), ceR, then the sequence {b, )=, is bounded.
Proof. By induction the following }nequality is true
k=1

besy Ss*byt+e- Y s, k=1,2,..,
j=0

and hence the assertion.
Now we define a function «: (0, c0) —(0, 1] by the formula
1 for pe(0, 1],
(18) o(p) = {
I/p for pe(l, o).
A certain property of this function is expressed by the following

LemMa 4. Let Xe Z[R]. If f and g are measurable real functions, defined
on the ser X, then

(19) [)Jr [/ (X)+g ()P dx]*@ < [ I/ ()P dx]*®+[[lg(x)P dx]*®, pe(0, o).
X X

Proof. For pe(0,1] inequality (19) follows immediately from the
inequality

lf(X)+g ()P <GP +g ()P, xeX,

in view of (18); and for pe(l, o), (19) is simply Minkowski’s inequality.

Our last theorem reads as follows.

Tueorem 5. Let I =0, a) and I, = [0, a,), where 0 < ay < a < o0, and
suppose that functions fieS§[I), i=1,...,n, and h: I xR" - R are given and
Julfil hypotheses (ii}~(vi), the constant M given by (12) being finite. If there
exists a number be(0, a) such that

n a(p
(20) si= ) ess sup[[g(x)]p] ! <1,

51 xdba | JSi (x)

where a is the function defined by (18), and if @,eIP[I,] is a solution of
equation (1), then there exists exactly one solution ¢: I — R of (1) which fulfils
(2); moreover, pell[I].
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Proof. The existence and the measurability of ¢ results from Theorem
2, assertion (b), in view of hypotheses (ii) and (ii1). Thus it remains to prove

that jlm(x)lpdx < oo. Since the sets [, k =0, 1,..., are intervals having zero
I .
as the left endpoints, we infer from (6) that there exists a positive integer ko

such that [0, b] < I; . Moreover, recalling the proof of Theorem 3, we have
(21 ol ef[L], k=0,1,...

We introduce the following notation:

(22) = j' lo(x)|Pdx < 0,
L
(23) Uy =L\l k=1,2,..,
and
(24) b =[[le(Pdx]®, k=1,2,...,
Uk

where a is the function defined by (18).

It follows from (24), (23), (21) and (6) that for the proof of the
integrability of |p|? it suffices to show that the sequence [b,),, is bounded.
This can be achieved with use of Lemma 3. Namely, we shall show that (17)
holds with s defined by (20) and a number ¢ which will be defined later on.

Using (24), (1) and Lemma 4 we have for every k=1, 2,...

b, = U lo x)|" dx]*@

= tﬂh , 0L (¥ 0 LH(0])—h(x, 0,...,0)+h(x, 0,..., O dx }*®

Uk
< {th %, @ LA (9L @ o)) —h(x, 0,..., 0)f dx}=® 4
+[ [ [h(x, 0,...,0) dx]*®.
Uk
Write
(25) K, = [_“h(x, 0,...,0)F dx]a(p).
I

By hypothegis (vi) the number K, is finite. Using hypothesis (v), notation
(25), Lemma 4, hypothesis (iv), relation (20), a change of variables in the
integral, definition (25) and inclusion (4) accordingly, we obtain

b—K; < l,[[g (x) Z lo i ( x)]l]pdxh(p)

aip)
\Z{ ji—)] oLhi(x ]I”'f.-’(x)dx%
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< Zn: ess Sup{[;,(g)]p

i=1 xelb,a)
< ' max { | lox)P dx}"“” <s [ [ le(xPdx]®.
1<ign f(0) U

a(p)
} { J o Ly 1P - (x) dx }@

-1V
Taking into account (22), (24) and the fact that «(p) < 1, we hence get
be—K; <5 (K+5EPY0 < 5-(K*@ +b. ) =5-byy +35-K*P.
This shows that the sequence {b,};2; fulfils (17) with
c=sK®+K,,
which ends the proof.

Remark. The choice of zero as the common fixed point of the func-
tions f;, i=1,...,n, as well as the fact that it is the left endpoint of the
intervals considered, is not essential.
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