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On a recurrence relation

by S. Czerwik (Katowice)

1. The object of the present paper is the recurrence relation
(1) TptmTt oot Cn=bs, m=1,

in which z, denotes the required real sequence and b, is a known real
sequence. We denote by Aa, the difference

dat
Aap = Ap11— an
and further

Aay & an, A" a, & A(Aay), v=0,1,2,..

We shall seek the sequences for which the differences of order p
APz, have a constant sign. In the case of m = 1 this problem has been in-
vestigated by M. Kuczma in [6].

We shall also give some applications of the results obtained to the
theory of functional equations. We shall establish some conditions (com-
pare [4]) of the uniqueness and existence of solutions satisfying equa-
tion (23). Equation (23) is a special case of the equation discussed in [2].
Formulas (33), (34), and (38) are a direct generalization of the formulas
in [3] and (5] (compare also [1]).

2. At first we shall prove the following

LEMMA 1. There may exist at most one sequence x, salisfying rela-
tion (1) and such that for a certain p =0

(2) ].im Apmn =

n—>0

If it does exist, then the differences A"z, are given by the formula

(3) Moy ==Y By, M =0,1,2, ..
=0
Proof. Applying the operation A” to both sides of relation (1) we
obtain
Ap$n+m+ ...+Ap$n == Apbn .
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a at
Putting y» = 4”°%a, ¢a = A”bs, we have

(4) YntmT oot Yn=0Cn
whence

Yn = On—Ynt1— co— Ynim -
According to (4)

Yn+1 = Cpr1— Yn42— ec-— Ynim+1
and hence

Yn =—ACa+ Ynim+1 -

By induction one can obtain the relation

k
(6) n = —Z Alnimivp+ Yntmink+y, k=0,1,2,..

v=0
According to (2) ﬂy,. = 0, whence by (5) relation (3) follows. Putting
2 = AP 'z, we have

Znimt oot 20 = Ap_lbu
and consequently

m-1
1 -
(6) zﬂ = m [AP lbn—z (m— 'v)y"+9] .
=0
Analogously we obtain A” *z, and next A sy, ..., A2y, Z,, whence

the uniqueness of the sequence , follows. This completes the proof.
Lemma 1 easily implies

CoROLLARY 1. The only sequence salisfying the homogeneous relation
(7) A
and fulfilling condition (2) s z, =0, n =0,1,2, ...

LEMMA 2. If for a certain integer p >0

(8) lim 4%, = 0,
n—+00

then there exists at most one sequence x, satisfying relation (1) and such
that the terms A"z, have a constant sign.

Proof. According to Lemma 1, it is enough to prove that con-
dition (2) holds. The proof of this fact is analogous to the proof of Lemma 3
in [6].
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Now we shall prove the following
THEOREM 1. If the terms Ab, have a constant sign and

(9) limb, =0,

n—00

then there exists exactly one sequence w, satisfying relation (1) and such
that the terms x, have a constant sign. This sequence i8 given by the formula

(10) Tn == Mbnsimsne -

=0

Proof. Since b, is a monotonic sequence, the series

D (1)l

where
d,, _ {bn+(m+1)k for =2k ’
° bn+(m+l)k+1 fOl' v = 2k+1 ’
k=0,1,2,.., converges in view of (9). Grouping its terms, we obtain

the formula (10), whence it follows that z, have a constant sign. It can
easily be verified that sequence (10) satisfies relation (1). The uniqueness
follows from Lemma 2 for p = 0.

Remark 1. If we require that
A2, 20 (424 <0),
then the condition (8) can be replaced by
(11) lim sup 4”b, = 0  (liminfA”b, = 0) .
n-00 nvo

Actually, if b, satisfies the condition
limsup 4”6, =0,
n—o0
then
0 < liminf {472y + ... + AP25} < limsup {A7Zp4m+ ...+ A%z} = 0,
71—00 n—o0

whence (since 4”z, > 0) we have

lim Ap$” == 0
n—>o0

and the uniqueness follows from Lemma 1. If we assume the conditions
pru < 0 ) ]jmmfdpbn = 0 ’
n—>00

the proof is analogous.
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Theorem 1 can be proved for differences of order p. To avoid burden-
some calculations and to make the argument clear, we shall consider

only the relation
(12) Znt2+ Tniy1+Tn = by .
We shall prove the following
THEOREM 2. If for a certain r > 1 the terms A" 'b, have a constant
sign and for a certain integer 0 < p < r condition (8) holds, then there exists
exactly one sequence x, salisfying relation (12) and such that the terms A"z,

have a constant sign (opposite to the sign of A™*'b,). This sequence is given
by the formula

p—-1 p—1 (‘”) 20—-1:

18)  an= > D~ M %, ) 31”'2 (2) 2"yt

k=0 v=k v=0

where

Yn = APxy = —2 Ap+lbn+3t .

=0

The proof of the above theorem will be based on some lemmas.
LEMMA 3. For an arbilraty sequence b, we have

p—1p-1 ()211’!7

(14) ZE( ~ap

k=0 v=

{(A8%prrt+ Abpyrs1+ A bny sz}

= by — (;;l'f j‘ (£)2""’A”b,,+,,, p=1,2,..
»=0

Proof. The proof will be by induction. For p =1 formula (14)
follows from the definition of A”b,. Assuming its validity for p > 1, we
have for p+1

v—k
Z Z (1) (),,2“ (At B s+ Db}

k=0 v=Fk

= b, — (—3:)0 2?: ( )21, kAPh,,p+ (3’,12;; i: ( )2p-kx

k=0 k=0

X {A"bp1r+ A" s 41+ Abnirsa) -
Next let us add and subtract the sum

(—1)p+1 1’+11 P+ op+1-k 4p+1
k=0




On a recurrence relation 65

It is enough to prove that

r=x+0— 31:“23(2)2’-"4%,”,,_

k=0

P
-1 p+1 3
e Y ()2 it At Auias) = 0.

k=0

Replacing 4°7'b, by A4%b,.1— 47bs, we have

1 p+1 ~
e Z L

k=0
where

A, = (P+l)2p+1—(k—1) (P:l)2v+1—k+3(£)2,,_k_

p—(k-2) (P p—(k—1) P\ op—-k
—(,24)2 —( 2y (f)e,

(’3’)20 for i<Oand i>n.

Using the formula

(15) : (1) = (3a)+ )

we easily obtain
Ay=0 for %k=0,1,2,..,p+2,

which completes the proof of Lemma 3.
Let p be written as 3s+¢, 0 < ¢ < 2; let us write

B, X 3(szl)z”"“-k(ifl)2”““—(1;)2”" , §=0,1,2,..,p41,

Cﬂf+a=—2AB8k+q—ls t=0,1,..,8,¢=0,1,2.
k=0

LEMMA 4. We have

e—1
(16) 2 By = Z Bysi= ) Buya=3"",

t=0 {=0

(17 0;=—(P;’)2”“", i=0,1,2,..,0—1.

Annales Polonicl Mathematiel XX b



66 8. Czerwik

Prooti. Suppose that p = 3s. Then
§Bs¢ = [8(°5 )z +3 (75 ) + 8525 2] +
e N (Al e

and applying (15) to the last two brackets, we obtain

o )

If p=3s8+1 or p = 38+ 2 the proof is analogous. The proof of re-
lation (17) is analogous.

Proof of Theorem 2. Let z, be any sequence satisfying
relation (12) and such that the terms A'z, have a constant sign. Since

p < r, the terms A"z, also have a constant sign for n sufficiently large.
According to (8) and Lemma 1 the relation

[~}
(18) Yo = A%p = — ) A" by s,

v=0

follows and next we obtain (according to (12))
(19) Ap_lmn = %Ap_lbn— 2Yn— 4 YUn+1 -
We shall prove the formula

(20) A"z, ES( —yr e ( ) AP~ ( 1) Z( D

k=0 =k

for a certain ¢, 1 < ¢ < p. For ¢ = 1 formula (20) is valid according to (19).
Assuming its validity for 1 < ¢ < p—1 we have for i+1

Ap—(i+l)wn - vf;Ap—(ﬂ'l)bn—%—A’-‘mn—a}élp—'a),.ﬂ

and next according to (20) (grouping the terms)

AP+ 22( —1y () _gEreeway

k=0 o=k +1
(=1 41\ i1
g 2 (V)2 e

o=0

We have proved that formula (20) is valid for 1 <i<p. If ¢ = p,
formula (20) is equivalent to formula (13).
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Since A™*'b, have a constant sign and 1 < p < r, the terms A7*'b,
also have a constant sign for n sufficiently large. Thus the series

D (1)
v=0
where
Apb,H.au for v = 2k ’

dyw - =Apbn+3,,+l for v =2k +1 ’

k=0,1,2,.., converges and formula (13) actually defines a sequence .
We have

S L (-1 §
Azp = 22 (—1) Tgeri A" bpiat T Z (’:) 2P~ Aypss -
k=0 o=k i=0

We ghall prove that formula (20) for sequence (13) and 7 = p—1 holds.
It is enough to prove that

-1
ey 8= Z AT S W "

The sum 8 may also be written in the form

1)" Z Bitins .

i=0
If p = 3s, then
a—1
(22) {Z By yn+p-1+2 Bs{?/n+p+2 Bgit1 yn+p+1}
i=0 $=0
)p+1 -2 8—1

{2 Z y: Y L n+si+2+2 Z By A% by 00+

k=0 {=0 k=0 i=0

s—1 k

+2 2 Bgity Av+lbn+st+1} .
k=0 §=0

According to (16) and the condition

4y = APby,y — 47Dy,
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we obtain
1)” &3 )n+1
8= 2 By 4 bn+p-1+ 2 CiA%bpy i+
i=0 =0

1 p+1
> S b s

f=0

p+1
~ =V 1’ Zom Bt

=0

whence, on account of relation (17) we obtain formula (21). If p = 3s+1
or p = 38+ 2, the proof is analogous. Applying this procedure succesively
for Ax,, A%v,, ete. p times, we finally obtain

APz, = —2 Ap+lbn+au .

r=0

Applying the operation 4""% to both sides of the above equality
we get

A2y == A bysnn .

Since the terms A"t'b, have a constant sign, the terms 4"z, also
have a constant sign (opposite to that of 4”7 'b,). According to Lemma 3
we easily verify that sequence (13) satisfies relation (12). The uniqueness
of such a sequence follows from Lemma 2 in view of the fact that con-
dition (8) and the inequality > p imply the relation

].imArb” == 0 ]
fn—>00

which was to be proved.

8. The results obtained can be applied to establish some conditions
of uniqueness and existence of solutions of the functional equation

(23) elf"@)]+ ...+ ¢lf ()] + ¢ () = F(a)

where ¢(z) is the unknown function, f(x) and ¥(x) are given functions
defined in an interval Y (finite or not). We shall assume that function f(x)
fulfils the conditions

fl@y#2, [Y)CY.
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Let us introduce the notation:

@ =e, @) =),
20 Z glf*@)], Fa= F[f“(w)] ,
App(@) = 9(@),  dpe(@) = pLf(@)]—p(a) ,
Ae(2) S A (dhe(@)}, n=0,1,2,.., zeX.
THEOREM I. The only funclion satisfying the homogeneous equation

(24) PLf™(@)]+ ...+ p(2) = 0
and fulfilling the condition
(25) llmA helf*(@)] =0

for cvery zeY and a certain p >0, 8
o) =0 for zeY.

This theorem is an immediate consequence of Corollary 1.

Lemma 1 implies, however, the following

THEOREM II. There exists at most one solution of equation (23)
satisfying condition (25).

An analogue of Lemma 2 is also true:

THEOREM IIL. If for every xe¢ Y and p >0

(26) lim 45, F[*(a)] = 0

then there may exist at most one solution of equation (23) such that for every
xz e Y the differences

(27) Apelf" (@], =n=0,1,2,..
have a constant sign.

If the function ¢(z) is semimonotonic {f} (cf. [4]) or monotonie,
then the differences (27) have a constant sign for p = 1 and we obtain

CoROLLARY 2. If
(28) lim 4 P[f*(z)] = 0

for every x € Y, then there may exist at most one solution of equation (23)
semimonotonic {f} (monotonic).

Remark 2. If we require that

dhelf"@)] >0 (dfpelf"(@)]<0
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then condition (26) can be replaced by

(29) ﬁl,{l_f‘;lpd&f‘[f ()] =0 (ﬁﬂjffdﬁ)f' [f(x)] =0).

THEEOREM IV. If for every x ¢ X the differences
(30) ApF(fY(=)], n=0,1,2,..
have a constant sign and for every ze¢ Y

(31) LmP(f"a)] = 0,

then there exists exactly one solution ¢(x) of equation (23) such that for every
ze Y the terms o[ f"(x)], n = 0,1, 2, ... have a constant sign. This solution
t8 given by the formula

(32) o(@) = = D ApFIf™"(z)] .

o=0

The proof follows immediately from Theorem I.

THEOREM V. If the function F(x) is continuous and the function f(z)
i8 continuous amd sirictly increasing in the interval {a, b, f(x) > x for
ze(a,bd), f(a) =a, f(b) =10, and if there exist functions @(xz) and y(®)
which satisfy equation (23) and are continuous in the intervals (a, by and
{a, b) respectively, then

(33) P@) = g PO+ D) (~16a)—F D),
(34) v@) = 225 P+ ) (~ 1 H ()~ Fa),
where

. _(FUH@) for v =2k,
(35) Gp(ﬂ?) - {F[f(m+l)k+l($)] fOT 9 = 2k+1;

F[f~ ™% ™a)]  for v =2k,

36 Hv =
( ) (w) { F[ f'(”‘+1)(k+l)(w)] fo,. D= 2]0+1

k=0,1,2,..

Proof. The sequence

2n = oLf"(@)]— =1 F (D)



On a recurrence relation 71

fulfils the relation
Tnym+ ot @n = Fa—F(b) Z F3.

Hence, according to Lemma 1 (p = 0 and » = 0), we get formulas (33)
and (35). For the sequence

2 = ¥l "@)]- 51 F (@)

formulas (34) and (36) can be obtained in a similar manner.

THEOREM VI. Let us suppose that function f(z) i conlinuous and
sirictly increasing in an interval (a, b) and that f(z) > z in (a, b), f(b) = b.
If a function @(x) satisfies equation (23) and for every x e (a, b) fulfils the
condition

(37) lim 4y, gl ()] = 0,
then
m—1
(38) #(@) = =15 [F@)— ) (m—o0)gf"a)]
where o

9(@) = Y (—1)(GLf(@)]— Go(a)} .
v=0
The proof follows from the proof of Lemma 1 (according to (6))
for p=1, n=0,

2= glf"(@)] and o = AnF[f"@)] .

I wish to express my thanks to Doc. Dr M. Kuczma for his valuable
remarks.
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