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of Polish spaces and for the compact-valued mappings
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Abstract. It is shown that under suitable assumptions on the partition there
exists a selector with properties of some interest in Topology, or in the Measure Theory
or in the Descriptive Set Theory.

The last section contains a very simple proof of the selection-theoremn of Ryll-
Nardzewski and the author for the case when the set-valued mappings are supposed
compact-valued and the o-lattice 8, under consideration, is a o-algebra.

1. Introduction. Terminology. There are essentially two types of
problems concerning selections. The first (which corresponds to the axiom
of choice in its classical form) consists in the following. Given a parti-
tion Q of a topological space X into closed non-empty (disjoint) subsets,
one has to define a selector for Q, i.e. a set § such that SN E is a singleton
for each FeQ.

In the second type of problems (corresponding to the general principle
of choice) we have given a set-valued mapping F: X—-2¥ and we are
looking for a choice function (called also a selector for F) f: X— Y such
that f(z)eF(x) for each weX.

We will use the following terminology (see also section 4).

Given a family L of subsets of X, we will say that Q is an L™ -parti-
tion if
(1) {U:EnG #0}eL for each open G = X,

E<Q

and we say that the set-valued mapping F'is an L™ -mapping (see [6], p. 273,
and [5]), if

(2) {: F(x)NG #@}eL for each open G = Y.

Accordingly, given a point-valued mapping f: X—>7Y (case where
F(z) is a singleton for each ), we say that fis an L-mapping if

(3) f 1 (@)eL for each open G = Y.
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In what follows (except in section 5), we shall assume that X = Y
is a Polish space (i.e. complete metric and separable) and that L is a o-
algebra of subsets of X (i.e. XeL and L is closed under the operations
of subtraction and of countable unions and intersections).

Under these assumptions (and in fact, under some slighter assump-
tions on L) the following statement has been shown (in [7], see also [8]
and [9]).

THEOREM A. Every set-valued L™-mapping F: X—2% admits a selector
f: X—Y which is an L-mapping.

As seen, this is a statement on selectors of the second type. The
corresponding statement of the first type — which we are going to prove
here — is the '

THEOREM B. Under the same assumptions on X (here X = Y) and on L
and assuming, moreover, that L contains all open subsets of X, every L™ -par-
lition Q admits a selector which is a member of L.

The following notation states the relation of Theorem B to A.
Denote by P the projection of X onto Q defined by the condition

zeP(x)eQ.
We have the following equivalence
(4) O is an L~ -partition iff P is an L™ -mapping.
Because, as easily seen,

(5) [ELé: EnZ ;éﬂ} = {x: P(x)NZ + O},
whatever is Z c X.

One sees also easily that if f is a selector for P and f is constant on
every EeQ, then the set f(X) is a selector for Q.

Consequently, the proof of Theorem B reduces to proving the two
following propositions.

PRrROPOSITION 1. If P is an L™ -mapping, then P admits a selector f which
i8 an L-mapping and is constant on each EHeQ.

PrOPOSITION 2. f(X)eL.

2. Proof of Proposition 1. Restart the proof given in [7], p. 399.

X being assumed separable, let B = (v, 7, ...) be a countable set
dense in X. We may suppose, of course, that the diameter of X is less
than 1.

We shall define f: X—R as the limit of mappings f,: X—~R satis-
fying the following conditions

(i), fn 48 an L-mapping,
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(ii),, fn 18 constant on each EeQ, B
(iii),, elfa(®), P(x)] < 1/2%,
(iv), [fal@) ~faa (@) < 1/2"7" for n> 0.

We proceed by induction. Put fo(x) = ry for each xeX. Thus condi-
tions (i)—(iii), are fulfilled.

Let us assume, for a given n > 0, that f,_, satisfies conditions (i),_,—
(iii)n—l .

Denote G7 the open ball {x: [v—r;] < 1/2"} and put

(6) ¢ = {z: P(2)nG} + 0B},
(7) D? = r:il(G?-l)y
(8) AP = 0" D",

Since Q is an L~-partition, so P is an L~ -mapping (see (4)) and hence
(by (2)) Cte L. Since f,_, is an L-mapping (by (i),_,), we have D}e L.
Therefore

(9) AleL.
‘We shall show that
(10) X = ATuvdju...
Let #<X. By (iii),_, there is y P (x) such that
Y —faa (@) < 1/2"70

Since K is dense in X, there is ¢ such that
Iri—yl<1/2® and [Ir—yl+ly—fia(@)<1/2"7

It follows that zeA}. Hence (10) is true.
Now put

B} =AY and B} = A}—(4Ajv...vd}?)) for i>1.
By (10) and (9) we have
(11) X = BJuB}uU..., B!nB. =@ for i #1t, and B}e¢L.
Let us define f,(x) for ¢ X -as follows
(12) fol®) =7, if zeBY, ie. f;'(r;) = B}.

We have to show that f, satisfies conditions (i),~(iv),.

Since R is countable we have by (12), f.'(Z)eL for each Z < R.
In particular f,'(@)eL for @ open in X; hence (i), is fulfilled.

In order to show (ii),, denote by L* the family of those ZeL which
are unions of some members of Q. Obviously L* is a ¢-algebra (con-
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taining X) and condition (ii), means that
(13), filryel* fori=1,2,...

So we may assume that (13),_, is true. It follows at once that D}eL*,
We have also C7eL*; for suppose that z¢C?, i.e. P(2)NG} # @, and let
2'eP(z). Then P(z') = P(x) and hence P(2')NG} #* @, which means
that &’ «C?. Thus P(x) c C}?. Hence CeL*, and since D}eL*, it follows
by (8) that ‘A7eL* and consequently B}eL*. This implies (13), by (12).
To show (iii),, and (iv),,, put zeB}. Then f,(x) = r; and by (8)

weCy, ie., ofr;, P(x)<1/2", and zeD}P, le, |fy_a(®)—rl<1/2"7,

and our conclusion follows.

By (iv), and by the completeness of the space X, the sequence f;, f,, ...
converges uniformly to a mapping f: X— X. Since the limit of a uniform-
ly convergent L-mappings is an L-mapping (see e.g. [7], p. 398, lemma),
it follows by (i), that f is an L-mapping.

It follows also from (ii), that f is eonstant on each EeQ.

Finally (iii),, implies that f(z)eP(x), i.e. that f is a selector for P.

3. Proof of Proposition 2.

LuMMA. Assume that the space X contains a countable open base and
that the o-lattice L (i.e. closed under countable unions) contains all open
subsets of X. Let f: X—X be an L-mapping and put

(14) I = {x: f(x) = =x}.

Then Ie(—L), i.e. (X—1I)eL.

Proof. Let &4, @,, ... be an open base of X. Obviously

(@ =y) =V,: (G, >yeE,) for each z,yeX.
Hence
(o =f@)) =V, [(24G,)V (f(2)eC,]],
and thereiore, by (14), we have
I =) [(X~6,)uf@,)

By assumption the sets X —@, and f~'(G,) belong to (—L). Hence
so does I.

This completes the proof of the Lemma.

It remains to show that f(X) = I, where the mapping f: X—> X is
assumed to be constant on each KeQ.

So let yef(X). Put y = f(x,) and x eE. Since f is a selector fcr P,
we have f{( wo)eP(:ro) l.e. yel, and sinee f is constant on E, it fo]lo“s that

fly) = f(x), i.e. f(y) =y, and thus yel.
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4. Particular cases. Remarks.

1. Theorem B can be applied to the cases where L denotes the fami-
lies: of Borel sets, of sets having the Baire property, of measurable sets.
In the last case, Theorem B reads as follows: every measurable partition
admits a measurable selector.

2. Inthe definitions of L~-partitions and L~ -mappings we have referred
to open sets G. Symmetrically Q is said an L*-partition if

(1) {EUQ: EnK #0}eL for each closed K< X,
and F is an L*-mapping if ([6], p. 273):
(2%) {w: F(z)nK #O}eL for each closed K < Y.
For point-valued mappings f: X—Y condition (3) and condition
(3") f ' (K)e(—L) for each closed K ¢ Y
are obviously equivalent (thus, if L = — L, it is legitimate to call f briefly

an L-mapping if (3), or equivalently (3’), is fulfilled).

3. Let us note that our terminology for partitions and set-valued
mappings agrees with the usual one in case of semi-continuity, case when L
represents the family (not an algebra!) of open, respectively olosed sets
(see e.g. [b], p. 185).

5. Compact-valued mappings and partitions into compact subsets.
In this section X denotes an arbitrary metric separable space and %(X)
the space of all compact subsets of X, endowed with the Vietoris topology.

First, let us note that, L being supposed a ¢-algebra and ¥ compact-
valued, conditions (2) and (2) are equivalent ([6], p. 274, Corollary 5')
and, moreover (ibidem Theorem 4), they are equivalent to the condition
of 7 being an L-mapping (that means that F~!(G)eL for each G open
in €(Y)). '

Consequently, in what follows we may write briefly L-mapping
instead of writing Lt (or L™) mapping.

The following theorem has been deduced from Theorem A (see [7],
p. 400).

THEOREM C. For each Polish space X there is a choice-function f: 2%X—>X
of the first Baire class (which means that f(K)eK for each closed K < X
and the set f~'(G) is an F-set for each open G < 2%). .

Here we are going to give a very simple proof of that statement for
the case where 2% is replaced by #(X) (the space X being supposed arbi-
trary metric separable).

firec ecch metric scparable rpace can be (mbcdded in the Hilkert
cube, H, the proof reduces to the case X = H.
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So let g: I--H be a continuous mapping of the closed interval I
onto H. Then the inverse mapping g~*: H—>2! is upper semi-continuous
(see e.g. [b], p. 57), hence of the first class ([5], p. 70).

Next denote by h(A) the first point of A for 4 e2!. Obviously the
function h: 271 is continuous (see [5], p. 49).
It remains to put

f =gohog™'.

Now we shall deduce from Theorem C, thus modified, both Theo-
rems A and B, always under the assumptions that Y is metric separable, L
a oc-algebra, F: X—>¥(Y) an L-mapping, and Q an L-partition of the
metric separable space X into compact: sets.

Proof of Theorem A. Let, the mapping ¢: ¢(Y¥)— Y, be a choice-
function (i.e. e(4)ed for Aeﬁf(l))of' the first class. Then f = eoF is
a selector for F and f is an L-mapping.

The fact that f(z)eF(x) is obyious. It remains to show (3). Let G
be open in Y. We have

1@ = F [ H(@)];
since ¢ is of the first class, the set e~!(G) is F, in €(Y). So let
e} (¢) = K,UK,U ..., where K; is closed in #(Y).

Since F' is an L-mapping, the set I~ (H) belongs to L for each H open
in ¢(Y), and so does F~!(K,) (because L is a s-algebra). Consequently

F (KUK, ...) = [F (K)UF (K,)U ...]¢L.

Proof of Theorem B. We have to show the Propositions 1 and 2.

1. As shown, the mapping f = eoP: X—» X is a selector for P and
is an L-mapping. Moreover, f is constant on each FeQ, because

x'eP(x)=>P(z') = P(x).
2. The proof of Proposition 2 given in Section 3 remains unchanged.

The author is indebted to Professor A. Maitra for helpful remarks
and conversations.
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